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Electrophysiology studies of the brain allow us to study the dynamics of the cortex as subjects 

perform tasks and experiment.  Of particular interest in human studies is the activity that occurs in 

motor related areas of the brain that occur during precise, dexterous movements of the hand – a unique 

property among primates.  Previous studies of the central and peripheral motor nervous systems 

suggest the presence of synergistic activations of musculoskeletal groups during coordinated 

movement, and that these “motor primitives” may be present at the level of the spinal column and 

possibly in higher levels of CNS. In this thesis we explore the presence of these synergistic movements of 

individual digit joints during coordinated object grasping by leveraging high-resolution 

electrocorticographic (ECoG) recordings and the subsequent viability of this type of dimensionality 

reduction as a possible model of prosthetic control.  We demonstrate that ECoG recordings are a stable 

and viable tool to investigate the underlying neural physiology, and explore the spatial distribution of 

activity during dexterous hand movement in medium (5mm-spacing) and high resolution (3mm) ECoG 

grids.  High gamma (75-200Hz) activity in primary motor cortex shows high spatial preference for 

individual digit movements during overt finger flexions.  In contrast, the average spatial activity during 

object grasping appears to show little unique spatial organization relative to the grasps performed.  

However, by applying a Kalman filter to predict the hand pose, we are able to accurately reconstruct the 

position of the hand in real-time.  The Kalman filter coefficients suggest that a plausible model for motor 

movement may be the initiation of a common kinematic grasping motion by the first dimensional 

component, allowing the brain to modify this trajectory in real time as the hand approaches the object 

by modulating spatial networks associated with subsequent dimensions. 
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1 Chapter 1 – The Neural Basis of Dexterous Movement 

1.1 Prologue: Brains are complex 
The “holy grail” of sorts of the entire neuroscientific community would be to discover that 

brains - and neuron-based systems in general - operate on some common underlying code.  This code 

would describe ideas, concepts and thoughts as trains of pulses of neurons, providing a consistent 

pattern across different people for similar concepts.  If such a code were to exist, it means that even 

second or third order metrics - such as local field potentials, ECoG and EEG - would be built up 

of  common neural building blocks and thus be possibly decoded into its basic neural coding parts.   

However, even in theory this concept has its problems.  Consider the following example: 

imagine the sport of football.  The theory of the “neural code” would suggest that this concept would be 

built up of one or more firing patterns, and that these firing patterns would have similarities between 

person.  Upon hearing the word “football”, one person may imagine the sport of football and produce a 

series of neural spikes that encoding the concept of a sport played with helmets, pigskins, quarterbacks 

and wide receivers.  However, another person may hear the word “football” and, though thinking about 

the similar concept of sporting, imagine a completely different scenario with a round ball, goalies, 

shinguards and goals.  It is hard to imagine any type of higher level “code” that would be descriptive 

enough to encode the concept of football but flexible enough to accommodate multiple different 

interpretations.  That isn’t to say that the brain doesn’t rely on some sort of underlying building block or 

coding scheme, but the current state of understanding of nervous systems - that it’s an organic, 

procedural system highly reliant on remote input - means that analysis of these systems is not 

straightforward. 

Complicating the issue of truly understanding how the brain works is compounded by its sheer 

size.  The average human brain has roughly 87 billion cells, though most of it in the cerebellum; the 

telencephalon – or cortex – only contains 12-15 billion neurons1–4.  If we were to attempt to encode and 

record this information with the most minimal amount of information possible - a single bit, 1 or 0, 

whether the neuron is firing or not - it would require over 80GB of memory alone to store the state of 

the entire brain.  On top of that, it does not take into account how the system changes over time (how 

one neuron affects another).  The best case naive scenario would be that the brain could be described 

with a single mathematical equation relating X neurons to Y neurons (xt = Axt-1), though it is almost 

universally agreed that this is not in fact the case5–8. 

And even bigger issue than the count of 87 billion cells is the number of interconnections called 

synapses between them.  While the exact number varies from cell to cell, a broad estimate puts the 
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number of cells that a single neuron synapses on at roughly 10,0009.  Combining these metrics, we arrive 

at a staggering number of 870 trillion interconnections in the brain; a number hard to conceive much 

less represent in a mathematical model.  It is impossible to enumerate all the possible connections 

between these cells, as the number of combinatorial possibilities is far greater than the number of 

atoms in the universe10.  Spatial culling can decimate this number significantly with upwards of 90% of 

these connections local in nature (usually within the local neighborhood of the neurons’ branching 

connection tree, or “dendritic tree”), but up to 10% project far beyond the local area of the cell11.  We 

have yet to discover how to reliably describe the way a single cell begins to make these connections 

much less the brain as a whole, though recent studies by have begun to shed some light on some 

possible single-cell models12–14. 

Luckily the brain is not the chaotic interconnecting mess that it could be; scientists have 

identified some forms of organization that the brain adheres to.  By simply visual inspection one can see 

that the brain has a form of spatial organization.  Two hemispheres are divided amongst a number of 

lobes.  The cortex is divided up into two main types of cells: gray matter, associated with neural 

computation, and white matter, neural wiring that connects remote areas of the brain.  The gray matter 

is known be organized into six distinct layers on the outside of the cortex, with recent theories being 

presented that these layers are organized into tightly packed, highly repeated ‘columns’ of 

cells15,16.  The “wrinkles” in a brain serve the purpose of increasing the surface area of the brain; 

increased surface area from the sulci (valleys) and gyri (ridges) of the brain allow more gray matter to be 

packed onto the surface17–19. 

In order to study such systems however, we have to rely on second- or third-order 

metrics.  There is currently no way of recording the activity of all the cells in the cortex, much less any 

way to identify and enumerate all the synaptic connections in their entirety.  Indeed, these synaptic 

connections have been known to change, grow and decay over time.  Such changes in the wiring are 

thought to be the basis of the way our brains adapt and learn.  In spite of this neural re-wiring, there are 

areas of the brain that show very highly correlated increases in neural activity with certain actions.  For 

example, should a normal, healthy human decide to shake their right leg, an area on the medial (middle) 

surface of the left hemisphere would likely engage.  This pattern of activity is common and robust across 

many studies and many different methods of recording neural firing.  And though the precise position 

within the cortex may vary and the exact networks are almost certainly unique from individual to 

individual, the shared ability to move, talk, and thing alike suggests there may be some underlying 

building blocks encoded within these networks. 
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The studies and experiments described in this document describe our attempts at making sense 

of these complex networks and attempts to shed light on the way networks within primary motor cortex 

– the area of the brain that has been implicated in volitional movement – begins and executes 

coordinated, complex movements of the hand.  Our cumulative results provide evidence that these 

complex networks may direct coordinated not by operating at the joint angle level, but by leveraging a 

set of lower dimensional, synergistic movements that can be added up to create nearly any hand pose. 

Hypothesis  

Great strides have been made since the study of the human brain began and our understanding 

of its organization is more detailed than ever.  Advances in clinical neurology, signal analysis and high-

speed recording equipment, coupled with cutting edge technology have introduced new recording and 

imaging techniques such as functional magnetic resonance imaging (fMRI) and electroencephalography 

(EEG), allowing us to probe the inner workings of the brain even further.  However, only recently have 

these technologies been combined to explore the possibility of a direct biological interface with the 

cortex.  Neural activity recorded directly from the cortical surface in real time can be quantified, 

classified and mapped to actions on a computer using electrocorticography (ECoG), resulting in a true 

brain-computer interface (BCI).  These interfaces allow subjects to control actions on a computer by 

modulating activity in specific areas of the cortex.  BCI systems offer the hope of greatly improving the 

quality of life for paralyzed and locked-in patients by allowing rapid communication and can introduce 

dramatically new ways to control dexterous prosthetic devices.   

Though the idea of mapping neural activity directly from the cortical surface to the operation of 

a prosthetic limb is enticing – allowing the circumvention of physiological absences or defects that may 

exist lower in the motor system – it is not a straightforward issue.  How cortical neurons interact 

between themselves and the peripheral nervous system to generate coordinated, multijoint movements 

of the arm, wrist and hand is not well understood.  Current ECoG BCI paradigms are insufficient to probe 

these complex interactions in primary motor cortex, an area of the brain likely involved in proximal and 

distal joint movement.  In order to identify the specific role that primary motor cortex plays in the 

generation and synchronization of multijoint movements, we propose to combine high dimensional 

motion capture with a novel high-spatial-resolution ECoG electrode design to identify the 

neurophysiological method used to encode high dimensional dexterous movement. 

Aim 1: Establish that micro-ECoG grid recordings can provide physiologically relevant 

biokinematic correlates – Electrocorticography studies involve epileptic patients whose brains have had 

electrodes implanted for the purposes of seizure foci mapping.  Current clinical protocols dictate the use 
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of grids of electrodes that are 3mm in diameter and spaced at 1cm apart.  Because this undersamples 

the area of cortex dedicated to hand motor control, this study investigates the use of miniature ECoG 

grids exclusively for the purposes of identifying activity correlated with hand motor cortex, ensuring 

both the stability of cortical signals recorded with grids and that cortical potentials recorded using 

microgrids show similar spectral features to standard grids.  

 

Aim 2: Validate micro-ECoG as a means of identifying spatially distributed cortical activity and 

establish synergistic components of grip – Our hypothesis that the underlying motor control signals 

generated by primary motor cortex may be spatially distributed, we need to demonstrate that micro-

ECoG devices can identify spatially distributed activity.  In addition, research into the control 

mechanisms behind dexterous hand motions has shown that the cortex may be encoding motion at a 

higher level than that of individual distal positions joint angles.  We will attempt to validate these 

findings initially in a healthy subject population using synergies derived from joint angles to use as a 

control for further simultaneous micro-ECoG study. 

 

Aim 3: Reconstruction of multi-dimensional hand postures using spatially distributed cortical 

activity patterns – Cortical activity will be recorded using micro-ECoG as subjects manipulate objects 

and perform freeform movement.  Identification of linearly independent spatial and temporal patterns 

of neural activity will be performed.  Patterns that are highly correlated to individual or groups of 

elemental hand synergies could demonstrate that individual muscle activation is not controlled at the 

cortical level, but instead are formed in later levels of the central and peripheral nervous system.  Time-

course measurements of cortical activity patterns associated with the identified muscle synergies will be 

used to investigate the viability of complex pose reproduction derived directly from motor cortex. 

 

1.2 Background 

1.2.1 Brain-machine interfaces 

Humans are able to express themselves and manipulate the world around them through a 

complex network of neurons whose output induces motion via force production from skeletal muscles.  

The central nervous system directs goal-oriented cognition and relays the outputs from cerebral gray 

matter and down through the spinal column.  The spinal column translates these directions into 

commands for the motor neurons in the peripheral nervous system.  Damage or incapacitation of any 

stage of the information processing pathway can severely limit the ability of the person to interact with 
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many aspects of daily life.  Though recent innovations in cellular and tissue therapies show promise of 

restoring lost functionality to the nervous system, there is no near-term solution for those who are 

currently affected.  Recent technological advances have brought to light an alternative to repairing the 

damaged pathways: creating artificial pathways that can re-route the blocked information around the 

damaged tissue.  Brain-machine interfaces are systems designed to read activity from the earliest stages 

of the information pathway in an effort to bypass all damaged or missing biological elements. 

1.2.2 Bypassing the peripheral and central nervous system 

Brain-computer interfaces (BCI) systems can be extremely important to patients with 

debilitating diseases that effectively shut down the body’s ability to perform motion while leaving the 

nervous system intact.  Individuals with syndromes such as amyotrophic lateral sclerosis (ALS) and 

cerebral palsy experience a disconnect in the continuity between the brain and the rest of the body.  

These patients retain full mental capability, and can only communicate through extremely limited means 

such as blinking eyelids.  A testament to the fact that these patients retain full mental capacity is 

illustrated by Jean-Dominique Bauby, who experienced locked-in syndrome due to a brain stem stroke.  

He was able to write an entire book despite his locked-in state, though his only form of communication 

was by assisted eye blinks.  After composing paragraphs in his head, his assistant painstakingly recited a 

frequency-ordered alphabet until Bauby blinked, indicating the desired letter.  While it proved that his 

mental capacity was retained in his locked-in state, the wearisome communication process proved 

frustrating.  By reading neural activity from the cerebral cortex before the point of communication 

breakdown, BCIs offer the ability to provide a much higher bandwidth of communication.  

By recording at the earliest possible stage in cognition, BCIs remove any possibility of 

interference from damaged later stages.  However this shortcutting also removes many important 

processing stages further down in the central nervous system.  Any translation between cortical 

commands and afferent axonal output will not be present in BCI systems that are missing these post-

processing stages.  Previous brain-computer interface studies have chosen to ignore the processing that 

goes on in the later stages of the central nervous system, showing that it is possible both to control a 

computer program and to stimulate paralyzed muscles by clever mapping of raw cortical activity.  Any 

computation and behaviors done subcortically are thus forced on the cortex, requiring that it perform 

functions previously delegated to the spinal cord. Limitations imposed by the spatial resolution and 

complex inter-neuron synaptic circuits have constrained these activities to just a two degrees of 

freedom.  Though enough to control simple tasks, emulation of the neural circuitry present in the spinal 
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cord could provide a much more natural method of controlling devices functioning to translate the 

higher level control signals into multidimensional control. 

1.2.3 Primate model research and limitations 

Few animal models can provide a good basis for exploring the complex cortical activity required 

for performing dexterous movements of proximal and distal limbs.  Though their dexterity is not quite 

human level and the substantial differences in hand morphology between macaques and humans are 

the subject of current scientific debate, it is pertinent to compare the practice of grasping objects in 

humans and monkeys because of the ability to look for homologous activity between the species’ 

brains6-8.  Primate models additionally offer a larger subject population subject to fewer ethical 

problems than studies of cortical activity using human subjects. 

Through stimulation of the cervical spinal cord, Moritz et al. have demonstrated that forelimb 

movements and coordinated muscle responses can be evoked via microstimulation in sedated 

monkeys9.  This study demonstrating that the stimulation of multiple muscles in a coordinated fashion 

can be achieved from stimulation of the central nervous system in primates provides significant insights 

into the understanding of spinal synergistic circuitry and their application to neuroprosthesis.  A further 

study by Moritz, Perlmutter and Fetz sought to circumvent descending control signals around a blocked 

peripheral nervous system pathway by recording directly from the cortical surface of a macaque monkey 

and using FES to induce movement of the primate’s hand10.  They found that decoding local populations 

of neurons by using firing rates allowed the monkey to regain movement even after a complete nerve 

block, regardless of any previous association to movement; a finding that greatly expands the pool of 

possible control signals. 

Vargas-Irwin et al. recently published a paper investigating how the activity of populations of 

cortical neurons generates coordinated multijoint movements of both proximal and distal upper limbs in 

primates11.  The study combined an implanted multi-electrode array over primary motor cortex with a 

full-arm, 25-marker motion capture system to relate the recorded neural activity to the kinematics and 

dynamics of arm, wrist and hand posture during grasping movements.  They showed that single neurons 

were kinematically coupled to multiple joints and that local ensembles of motor neurons in primary 

motor cortex contained sufficient information to decode 25 measured joint angles.  The results also 

suggested that decoding high-dimensional reach and grasp motions was plausible using miniature 

intracortical neuroprosthetic devices. 

While these primate studies offer support to the theory that these types of circuits are present 

in higher primates (i.e. humans), there are significant limitations in experimental design.  Vargas-Irwin 
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noted that while they were able to record from primary motor cortex and train the monkey to grasp the 

swinging object presented to it, individual distal joint angles tended to be highly correlated with each 

other due to the monkey’s strategy of moving all fingers in concert during grasping.  It is not possible to 

train or instruct primates to perform highly dexterous tasks, limiting experiments to ones that do not 

require a high degree of dexterity.  Additional neuroanatomy differences between humans and lower 

primates also confound any neural encoding that may be present in animal models. 

1.2.4 Evidence of synergistic musculoskeletal control 

The motor systems present in the spinal cord have long been known to be capable of producing 

a wide range of motor behaviors when isolated from the rest of the central nervous system.  Evidence of 

complex muscle synergies residing the vertebrate spinal column has been proposed given recent 

experiments in frogs and cats.  Bizzi et al. investigated the role of the spinal cord in lower limb kick 

production in decerebrate frogs and found that stimulation of specific spinal interneuron sites produced 

robust, reproducible activations of leg muscles12.  Depending on the initial position, the direction of 

motion of the leg could be predicted by a vector field.  Different stimulation sites produced unique 

vector fields.  Giszter et al. proceeded to show that these force fields are not due to random activation 

of motor neurons, afferent stimulation,  or direct stimulation of descending systems in the spinal cord13.  

Though these initial findings might imply that every action performed is contained within a 

certain special area and generated by a unique circuit of spinal interneurons, the presence of only a few 

units of motor output is impractical based on the wide range of motor behaviors exhibited.  Subsequent 

work into spinal interneuron systems indicates that the vertebrate nervous system might combine these 

modules to produce a range of unique movements.  Mussa-Ivaldi et al. found that when two sites of the 

frog spinal cord were stimulated, their unique force vector fields produced by individual stimulation 

generated a new vector field nearly an exact linear summation of the two unique vector fields14.  

Extension of this principle implies that a few individual spinal units can be multiplexed to produce a wide 

range of motor responses in a computationally simple manner. 

It is important to demonstrate that these systems can be volitionally controlled via supraspinal 

structures of the central nervous system and are not reflexes produced by solely afferent input.  d’Avella 

and Bizzi examined the force fields evoked by vestibular stimulation in frogs, a neural pathway that 

exists above the brain stem.  By applying principal component analysis to the resulting fields, they found 

that the dimensionality of the vector fields produced was surprisingly low15.  This work, combined with 

much of the recent spinal cord research, indicates that the spinal cord plays a key role in contributing to 
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the neural production of movement instead of acting as a simple relay between supraspinal systems and 

the peripheral nervous system. 

In recording directly from the cortical surface, neural recording systems miss a significant 

portion of the neural computation that goes into the production of movement.  In order to produce 

movements approaching the dexterity of those able to be performed by the human upper body – 

particularly the complex and precise movement of the hand – cortical signals need to be augmented by 

a system that can emulate the synergistic movement primitives encoded in later stages of the motor 

pathway.  Little is known about these types of muscle synergies in higher mammals and humans in 

particular.  Furthermore, the role the cortex plays during synergy generation is currently unknown.  Our 

proposal will complement and extend these promising studies in frogs and illuminate cortical activity 

during muscle synergy generation. 

 

1.3 Electrocorticography (ECoG) 

1.3.1 Recording cortical electrical activity 

A range of technologies have been developed that allow exploration of activity in the human 

brain by detecting the minute electric fields given off by neurons firing action potentials.  Each method 

contains its own unique set of trade-offs between invasiveness, signal fidelity, temporal and spatial 

resolution that must be considered when choosing what technique to investigate the desired neural 

activity. 

Electroencephalography (EEG) was among the first non-invasive methods of physiological 

measure of cerebral function16.  It consists of placing electrodes on the surface of the scalp in a regular 

pattern and measuring the electrical fields generated by cortical neural activity.  While these systems 

have allowed the exploration of cortical dynamics in healthy subjects without exposing them to the risk 

of cranial surgery, it is hampered by a low signal-to-noise ratio and by distance from the surface of the 

brain.  EEG source analysis involves triangulation of dipole current location.  Due to the extremely small 

dipoles generated by neural firing, this triangulation can prove difficult due to the introduction of noise 

from both physiological noise due to skull conductivity and hemodynamic activity and external artificial 

amplifier and line noise17.  In addition, because EEG observes dipole currents, an electric field generated 

by a neuron falls off as 1/r3.  This dramatic loss of signal with distance implies that even at the surface of 

the scalp, the distance between the electrodes and the surface of the brain is large enough that any 

signals that are detected have been spatially smeared.  These limitations imply that cortical activity that 

produces synchronized rhythmic firing over a large area of cortex can be identified (such as the classical 
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alpha, theta and beta rhythms), but any unique local network activity that occurs asynchronously from 

these rhythms would be lost.  As such, it is not viable to investigate local spatial organization of the 

cortex. 

Recent advances in computing and engineering has allowed the development of functional 

magnetic resonance imaging (f77), a non-invasive tool capable of measuring three dimensional 

hemodynamic responses associated with neural activity18.  However, while the metric used to measure 

hemodynamic activity – blood oxygen level dependent or BOLD – is correlated with neural activity, the 

underlying physiological mechanism that causes changes in the BOLD signal are still not well 

understood19.  Changes in the BOLD signal are hypothesized to be linked to the increase in metabolic 

activity that is present between 1-6 seconds after an area of cortex has increased in neural activity20.  In 

spite of its non-invasiveness and high spatial resolution – especially with newer 1.5 and 3 Tesla fMRI 

machines – the lack of temporal accuracy and limitations in blood oxygen diffusion are not conducive to 

investigating the intricacies of hand motor cortex during dynamic movement. 

To increase control speed and recording accuracy, many researchers have begun utilizing 

invasive recording methods.  Arrays of electrodes were designed to be implanted beneath the skull and 

the dura – a tough protective membrane between the brain and skull – directly on the surface of the 

brain.  Each electrode would be inserted into the neocortex and record the electrical potentials of 

neighboring neurons as they fired action potentials.  As far back as the 1970s, Fetz and Finocchio were 

able to implant single-unit electrodes by performing cranial surgery on macaque monkeys.  These initial 

trials allowed the monkeys to volitionally control an external device driven solely by recorded neural 

activity21.  Promising results spurred the first human trials of these devices to drive a brain-computer 

interface22.  Extending the basic proof-of-concept single unit neuroscience research allowed several 

groups to develop real-time, closed-loop, BCI systems capable of controlling multiple degrees of 

freedom in both monkeys and humans23-25.  

In order to record single unit activity, microwires 20 um in diameter are implanted within gray 

cortical matter a few millimeters down into the parenchyma and usually anchored to the skull.  Layer V 

pyramidal cells in primary motor cortex have classically been the targets for BCI studies, given their 

characteristic activation and relatively large amplitude extracellular potentials.  Because of their small 

size, their lateral recording volume does not detect more than 200 um in radius.  Any migration of the 

cells or small movement of the soft brain matter can change the area the microwires record, potentially 

causing stability issues during long-term recording26-28.  In addition, several studies have noted that 

implanting these single units directly into cortical matter causes local vasculature and neural damage. 
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1.3.2 Electrocorticographical recordings 

ECoG offers the best hope of a long-term BCI implant by providing a better signal-to-noise ratio 

and spatial specificity than EEG, higher temporal response than fMRI, and less chance of tissue damage 

and better biocompatibility than single unit recordings. ECoG achieves better resolution than EEG by 

placing electrode arrays onto the arachnoid mater surrounding the brain, below the skull and dura.  

Since most large cortical neurons are oriented vertically through the cortex (i.e. perpendicular to the 

cortical surface with dendrites on top and axons descending below), correlated electric potentials within 

the cortical column sum constructively.  The optimal location to record this correlated activity is at the 

surface of the brain, directly above the cortical column of interest.  Electrical potentials recorded by 

ECoG are generally five times higher than those recorded via EEG (±100 μV vs. ±20 μV)29.  Typical grid 

implants are 8x8 grids of 2-3mm diameter platinum electrodes with 1cm center-to-center spacing 

embedded into polydimethylsiloxane (PDMS)30, allowing low-impedance recording by using an 

intracranial reference electrode.  Grids are implanted by cutting a flap in the scalp and excising a section 

of skull to provide a window for implantation31.  An incision is made in the dura, which is pulled back 

exposing the brain and arachnoid mater.  Grids and strips of electrodes are placed over specific 

anatomic regions.  Microwires containing leads that connect to the electrodes are combined into thin 

macrowires within the PDMS and exit the skull via a small hole left after replacement of the skull 

window.  The macrowires are then connected to electrode ribbons which feed into biosignal amplifiers. 

1.3.3 Characteristic neural activity changes observed in ECoG 

We have previously shown that during active movement, the electrical potentials measured 

over motor cortex exhibit consistent modulation containing two distinct processes within the power 

spectrum32.  At low frequencies generally below 40 Hz, narrow-band power decreases occur during 

movement over a spatially large area of cortex indicating the cessation of a synchronous process, known 

as event-related desynchronization (ERD) or the Beta frequency band.  Higher frequencies exhibit a 

power-law like broad band increase in power, known as the chi-shift, over a focal area of motor cortex, 

analogous to an increase in a noise-like process. These high-frequency increases have previously been 

understood to show synchronous processes within local cortical networks, but our recent work has 

showed that they reflect broad-band spectral changes across the entire spectrum that are obscured in 

the lower bands by a synchronous low-frequency process. Using principal component analysis (PCA) on 

the power spectra, we have been able to separate the broad spectral, spatially focal process from the 

low frequency rhythm decrease 33.  This provides a theory to bridge the gap between the action 

potentials recorded by single units and the continuous potentials recorded by ECoG. 
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The shifts in the power law are estimated to be based on the physiological changes that occur 

during changes in neural activity.  The beta band has been suggested as a rhythmic thalamocortical reset 

circuit, causing large numbers of neurons to fire synchronously and become too exhausted to begin 

communicating in local circuits.  When the thalamocortical connection ceases, neurons become free to 

communicate in independent local circuits across the cortex, temporally spreading out the spiking 

activity in noise-like process.  Superposition of these two proposed processes can explain the spectral 

shifts seen during ECoG recordings: a low-frequency, spatially distributed decrease in low frequency 

power and a broad power increase in a high frequency band (HFB, 75-200Hz). 

These broadband high frequency spectral changes may provide evidence for a macroscale 

correlate of population firing rate34.  Models of the broadband spectral changes in potentials recorded 

via ECoG imply a correlation with the action potential rate at the single-unit local field potential scale, a 

possible generic representation of mean firing rate of the population of neurons generating the 

electrical field.  A recent study has provided evidence for this model, showing that in order to increase 

HFB activity in ECoG, a subject can either increase the firing rate in the population of neurons being 

recorded by the electrode or increase the coherence in spiking neurons 35. 

Constraints of current ECoG technology 

ECoG provides a semi-invasive method to control computational devices by using real-time 

classification of neural signals, requiring very little training time36.  Further discoveries are limited with 

current ECoG technologies and signal classifications.  Due to the wide 1cm spacing of electrodes 

currently used in clinical studies, large populations of up to 5x105 neurons are recorded under each 

electrode site.  While this can provide evidence of activity in specific areas of the brain, the identification 

and classification of local spatially distributed neural networks is impossible at current resolutions.  

Developing electrode arrays with smaller inter-electrode distances could provide the resolution needed, 

though research into the minimum spacing needs to be done to ensure neighboring electrodes are 

sensing unique information and are not compromised by a salt bridge being formed by ions within the 

cerebrospinal fluid surrounding the brain. 

Current BCI paradigms screen for gross high frequency activity during certain modalities of 

movement.  Electrodes showing activity correlated with periods of movement have their changes in high 

frequency mapped to a control signal; increasing spectral power beyond a linear threshold triggers the 

control signal output.  This technique, while viable for simple control mappings, provides only a binary 

output of a positive or negative result.  Each electrode can provide only one control signal, meaning 

multiple degrees of freedom require multiplexing the identified control features.  This leads to 
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complications when controlling two or three degrees of freedom from two or three control features and 

the near impossibility of controlling high-dimensional systems.  Controlling modern prosthetics in this 

way would be an effort in futility, as some manipulators precisely mimic more than 20 degrees of 

freedom present in the human hand37. 

Even if a creative mapping solution were applied, merging multiple control feature modalities 

would be un-intuitive.  Consider hand and tongue features identified and mapped to control of a 24 

degree of freedom robotic hand.  The subject’s hand movement could be applied to cycling through the 

currently controlled joint with tongue motion controlling the direction of joint movement.  Performing 

even the simplest of tasks with this unintuitive mapping would be extremely difficult.  Though the 

human central nervous system has shown an amazing ability to adapt, applying unintuitive mappings of 

control w ould require long time periods to learn and may not ever approach the level of dexterity 

required for even the simplest tasks. 

Our proposal involves addressing all of these shortcomings of current ECoG tasks.  We will 

investigate a mapping of activity in the hand motor that does not require identification of each joint 

velocity or muscle force in the human hand, and apply this mapping of cortical activity to the dexterous 

control of a highly articulated prosthesis. 

1.4 Hypothesis 
In the remainder of this document we aim to show that, given evidence the musculoskeletal 

system is driven synergistically by descending cortical commands, we propose that high dimensional 

hand dynamics are encoded in low-dimensional, spatially distributed networks within primary motor 

cortex.  

We present our study of this hypothesis in using the following organization: 

 

Aim 1: Establish that micro-ECoG grid recordings can provide physiologically relevant biokinematic 

correlates 

 Chapter 2 – ECoG as a stable form of cortical measurement.  Should the signals we record 

during our ECoG studies change and shift on short order, that would suggest that any mappings 

and encodings we find may only be temporary and not a true basis for musculoskeletal 

locomotion.  It is critical to show that the signals we record are stable over time, and we do so 

by investigating the ability of subjects to elicit robust, volitional modulation of local areas of 

cortex using a brain-computer interface as a form of experimental control 
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 Chapter 3 – Evaluating the returns of increasing ECoG resolution.  Before designing and 

manufacturing a micro-ECoG array, it is prudent to investigate the return on increasing the 

density of ECoG electrodes.  Should we discover that there is a spacing or resolution limit where 

ECoG recordings would provide diminishing or no returns, there is no use in developing a micro-

ECoG grid smaller than this theoretical limit. 

Aim 2: Validate micro-ECoG as a means of identifying spatially distributed cortical activity and establish 

synergistic components of grip 

 Chapter 4 – Using micro-ECoG to identify phoneme generation.  To establish that micro-ECoG 

can identify unique spatial activity patterns, we studied the patterns generated during speech 

phoneme generation.  Previous studies have shown that parts of auditory cortex are arranged 

tonotopically.  These tonotopic maps can provide a good target to see if micro-ECoG can 

discriminate these spatially arranged networks of neurons and their corresponding patterns of 

activity. 

 Chapter 5 – Identifying grip synergies using joint angles in healthy populations.  Our 

experimental setup for mapping micro-ECoG signals to hand poses requires that we establish 

the presence of the hand synergies at the musculoskeletal level.  This chapter addresses two 

aspects of synergy generation: first, that synergies exist not only in end-effector space as 

measured in Cartesian coordinates but also in joint-angle space; and second, that these 

synergies, should they exist, are present in healthy populations to discount the possibility that 

synergies identified in the epileptic subjects are not products of their unique pathology. 

Aim 3: Reconstruction of multi-dimensional hand postures using spatially distributed cortical activity 

patterns 

 Chapter 6 – Recorded dynamics of primary hand motor cortex during simple tasks.  Based on 

our previous ECoG studies with macro, mini and micro-ECoG, we design a high resolution ECoG 

grid for intraoperative subdural cortical recording.  In this chapter we explore brain activity 

during rest, gross hand motor movement, and highly stereotyped, simple finger flexion as a 

basis for examining more dynamic, dexterous movements.  

 Chapter 7 – Identifying and mapping cortical activity patterns to synergies.  Expanding on the 

previous chapter, we explore in depth cortical activity that occurs during highly stereotyped yet 

dexterous hand motion in the form of object grasping.  By building a mapping of cortical activity 
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recorded during grasping to muscle synergies identified during the recording, we can begin to 

reconstruct the estimated hand pose based solely on primary motor cortex activity and compare 

our estimates to the ground truth.  In addition, we explore the ability of this mapping to predict 

hand motion during non-stereotyped, freeform volitional motion. 
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Figure 1 – Brain-computer interfaces attempt to decode natural neural activity in the cortex.  Should a descending motor 
pathway become damaged or dysfunctional, it is possible that an artificial pathway can be created by decoding intent at the 
cortical level and bypass the biological system 
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Figure 2 – Example of electrocorticography (ECoG) mapping.  A) Craniotomy window is removed and dural flap opened, 
revealing the cortical surface. B) Implantation of platinum electrode grid embedded in PDMS, placed directly on the cortical 
surface. C) Post-implant x-ray showing the craniotomy window, electrode grid and strips. D) Estimated location of electrodes 
based on x-ray localization.  Original image by K. Miller, 2007. 
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Figure 3 – Overview of basic electrocorticographic (ECoG) screening.  A) When presented with a cue, subjects perform an 
overt or imagined movement.  Cortical signals are recorded by subdural platinum electrodes and the power spectral density 
is calculated.  When the cue disappears, the subject ceases movement and the power spectra is calculated.  B) The 
characteristic changes in power spectra between rest (red) and movement (green) can be seen as the superposition of two 
phenomena: a low large decrease in power in low frequencies (beta range, 15-35 Hz, blue), and a broadband increase across 
all frequencies (orange). C) Beta desynchronization appears over a large area of cortex, while the broad-band high frequency 
changes occur in spatially focal areas. 
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Figure 4 – Evidence of muscle synergies discovered by Bizzi et al. in frog spinal cord. A) Force sensing and positional 
information was recorded from decerebrate frogs.  B) Stimulation of spinal interneurons produced forces describable by a 
robust, reproducible fector field.  C and D) Two vector fields produced by separate interneuron stimulation sites. E) A model 
of the linear vector field sum of C and D.  F) Experimental results of costimulation, closely matching the linear model in E. 
Image adapted from Bizzi et al, 1991. 
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Figure 5 - Schematic adapted from Moritz et al. demonstrating their study recording from primary motor cortex in macaque 
monkeys that underwent a chemically induced peripheral nerve block.  Neural firing rates in M1 were decoded and linked to 
intra-muscular simulation, allowing the monkey to volitionally control wrist torques that it was physiologically incapable of 
generating due to the block. Adapted from Moritz et al 2007 
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2 Chapter 2 – Electrocorticography as a Viable Neural Platform 

2.1 Motivation 
In order to identify the spatial distribution of activity in motor cortex during active movement, 

the underlying signals must be stable between recording sessions.  In addition, any future application of 

cortical synergies identified in this research proposal must remain unchanging and stable over time if 

they are to be used to drive a prosthetic device.  However, studying ECoG signals recorded is 

problematic in that the brain is simultaneously processing and acting upon large amounts of sensory 

input.  It is an understatement to say that the brain is complex. It is capable of processing huge amounts 

of data, encoding it, and executing complex coordinated motions all simultaneously. Trying to study how 

the brain accomplishes this can prove difficult due to the asynchronous, parallel nature of neural 

networks. The fields of psychology and philosophy have been struggling with these types of problems 

for a long time. Given a novel scenario, how does one “learn” to solve or approach a problem? How 

does the brain plan and encode motor movement? Is the brain capable of producing unique, volitional 

patterns of activity? It becomes nearly impossible to design a non-invasive experiment that can have 

enough scientific controls to begin to investigate these types of questions. 

By their very nature, current studies that use BCIs are simple, tightly controlled experiments. 

Scientists are required to design paradigms in such a way as to remove confounding factors that may 

interfere with the operation of the BCI. The control signal that drives the BCI is likewise usually very 

simple: a single control electrode, a certain ICA component, a single frequency band, etc. It is precisely 

these types of limitations that can show the true value of BCIs as a tool for investigating the stability of 

ECoG recordings.  BCIs have very clearly established control signals, priors, and parameters (the 

decoding model) that can be directly correlated to a known, measureable output (the BCI output). 

Changes in the input control feature are inherently linked with both the output feedback the subject 

receives and the conscious and subconscious changes the subject makes to optimize their use of the BCI. 

In this way, BCIs offer a unique, compelling and controlled way of studying the stability of the neural 

signals generated by the cortex and recorded via electrocorticography. 

All previous multiple-day brain computer interface experiments have dynamically adjusted the 

parameterization between the signals measured from the brain, and the features used to control the 

interface. In this paper we present the results of a multiple day electrocorticographic (ECoG) brain 

computer interface (BCI) experiment.  After an initial screening and feature selection on the first day, 

five consecutive days of cursor based feedback were performed with a fixed parameterization. Control 
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of the interface was robust throughout all days, demonstrating that ECoG-based BCIs can be 

implemented for multiple-day control without the necessity for sophisticated re-training and 

adaptation. 

2.2 Background 
Human neocortical activity is dependent upon a wide variety of interdependent parameters. 

Across different spatial and temporal scales, this has been associated with a non-stationary neural 

signature in experimental recording. Attempts to capture and translate this neural activity as a control 

signal in a brain-computer interface have, to date, all relied upon dynamic decoding algorithms which 

either adapt continuously or are re-calibrated between experimental runs. 

Brain-computer interfaces (BCI) translate cortical signals for device control, bypassing the 

peripheral nervous system and motor pathways, and directly coupling neural activity in the central 

nervous system to a computational device for communication or manipulation of virtual and physical 

devices. Some common recording methods that researchers have used to capture neural activity have 

been to record the electric potential from extra-cranial electroencephalography (EEG), cortical surface 

electrocorticography (ECoG), and single-unit electrode recording using penetrating electrodes20.  

Regardless of recording technique, devices that replace natural control pathways will have to be robust 

over very long timescales.   

In order to detect and localize a specific control signal for the purposes of a BCI, a neural feature 

which is correlated with intent, and which can be volitionally modified, must be identified. The 

translation of the brain signal to a reliable control feature is characterized by some parameterization. An 

appropriate set of parameter values are typically learned during a controlled behavioral screening, and 

updated using continual adaptation or repeated screening. Wolpaw et al proposed the idea of two levels 

of training and adaptation of a BCI system21.  The first level has the BCI system initially adjust to the user 

and then remains fixed for the duration of control.  Unfortunately, many cortical recording techniques 

have been found to show large variation both within and across experimental sessions22–26.  Wolpaw 

suggested a second level of adaptation was required that contained multiple online adjustments to 

account for and adjust to variation within a single experimental session. Other researchers have 

performed long-term experiments where the translation parameters were not adjusted during the 

online experimental period, but parameterization values were re-learned prior to each online 

experimental session27–29. 



www.manaraa.com

BIOENGINEERING University of Washington 2013 

 

30 Chapter 2 – Electrocorticography as a Viable Neural Platform | Timothy Blakely – Doctoral 
Thesis 

 

EEG, the acquisition of cortical potentials from the surface of the scalp, allows long-term data 

acquisition of human cortical signals at the expense of spatial resolution.  Guger et al proposed that an 

appropriate method for an EEG-based BCI is an adaptive autoregressive approach to parameter 

estimation30, based upon changes in spectral power, and many EEG brain-computer interface research 

groups employ this autoregressive estimation in order to isolate features for acceptable control of EEG 

systems31–33. This approach was used by Shenoy, et al, who performed closed-loop control of an EEG 

system with control parameters found using training data.  Because of the intrinsic discrepancy between 

training and online data, they found that an adaptive control algorithm was necessary for accurate 

classification34.  

“Single-unit” recordings use penetrating intra-cortical electrodes to record spike events from 

one or a few neurons adjacent to the electrode tip.  They have been used successfully to extract 

features for feedback in primates35–37 and humans29 but, in all cases, the parameterization required 

adaptive algorithms that modified the control parameters in real-time.  In primate studies, Donoghue et 

al used coadaptive constant-parameter prediction35 while Fetz et al and Wessberg et al used artificial 

neural networks that adapted to changes in spike rates during online control38,39 to attain viable levels of 

classification. Furthermore, both cases required novel control parameter selection prior to each 

experimental session.  The long-term single-unit BCI experiments in humans performed by Hochberg et 

al., over a 9 month period, required re-learning of control parameters before each of 57 consecutive 

recording sessions29. 

Schwartz et al have recently demonstrated the ability to record neural spikes from an 

intracortical microelectrode array implanted in the proximal arm region of monkey primary motor 

cortex and use these recordings to control  a prosthetic arm in three dimensions for the purpose of self-

feeding40.  Though the monkey was able to gain control over the arm, a training period consisting of four 

iterations of control parameter calibration was required at the beginning of each daily session.  Control 

parameters from the final training estimation were used by the expectation-maximization algorithm 

used for control throughout the remainder of the day.   

ECoG, in turn, requires invasive placement of an electrode array subdurally to record cortical 

potentials at a higher spatial resolution, and thus a more local neuronal population, than EEG.  ECoG 

arrays have been successfully used to control a BCI device in one dimension24,25 and recently in two 

dimensions32.  Both control paradigms have employed adaptive algorithms that updated control 

parameters during closed-loop control.  The short duration of these trials, due to the clinical needs of 
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the subjects enrolled in these studies, has prevented investigation of the day-by-day variability of the 

classification parameters.   

We demonstrate that, using anatomically intuitive feature localization and a robust high 

frequency signal from the electrocorticogram, continuous control using fixed parameters is possible 

without re-training, re-learning of parameters or continuous parameter adaptation over five consecutive 

days of robust control of a brain-computer interface. 

2.3 Methods 

2.3.1 Patient availability 

The subject in our ECoG study was a 32 year old male patient at Harborview Hospital at the 

University of Washington (UW) with intractable epilepsy, refractory to medical therapy. The patient 

underwent implantation of a subdural electrode array above the right fronto-temporal cortex to localize 

the seizure focus during a 7 day monitoring period. The post-operative x-ray was used to determine the 

electrode grid locations41.  Informed consent was given by the subject in accordance with University of 

Washington Institutional Review Board protocol.  

2.3.2 Signal Acquisition 

The implanted electrocorticography array contained platinum electrodes in an 8x6 rectangular 

formation.  Electrode contacts were circular (4mm in diameter, 2.3mm exposed) and embedded in 

silastic with a face-center spacing of 1cm.  After leaving the head, the signals are split into two paths: 

one into the clinical monitoring system and the other into a Synamp2 [Neuroscan, El Paso, TX] recording 

system.  The amplified signals were passed to the general-purpose BCI2000 software suite.  Samples 

were taken at 1000Hz and band pass filtered from 0.3Hz to 200Hz.  Since the sampling rate and filtering 

settings were much greater than the range used for control in this trial (80-100Hz), the Nyquist 

frequency considerations did not impact the findings and filtering artifacts were not present. The 

BCI2000 software suite 21 was used for stimulus presentation, data acquisition, and real-time processing.   

2.3.3 Tasks 

The study consisted of an initial screening for control features, and then a five-day repeated BCI 

feedback experiment. The initial screening was a simple cue-based movement task to identify an 

appropriate electrode-frequency band combination for cursor control. In this task, a 3 second visual 

word cue was given to move either the tongue (the word “tongue” displayed on the screen) or the hand 

(“hand”). During the cue presentation, the subject would repeatedly open and close his left hand 3-4 
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times or protrude and retract his tongue 3-4 times. Thirty cues of each type were interleaved in random 

order, with 3 second rest periods (blank screen) between each cue. An appropriate frequency range – 

electrode combination for feedback (80-100 Hz, in two electrodes, at Talairach locations <58, 13, 28> 

and <58, 4, 33>) was chosen by comparing the distributions of power at each frequency, in each 

electrode, during “tongue” cues with the corresponding distribution from rest cues (quantified using the 

squared cross-correlation, r2, associated with the comparison). The power in this frequency range – 

electrode combination was then coupled to the movement of a cursor in a cursor based brain computer 

interface experiment 2,8,9,11,19,28. The velocity of the cursor, , was determined by the relation 

, where  denotes the power between 80-100 Hz in the electrode at Talairach 

locations <58, 13, 28> and <58, 4, 33> (Figure 6B).  denotes a “mean” value (Figure 6C), above which 

the cursor moved up, and below which, the cursor moved down. The gain, , was chosen so that the 

cursor would move in a reasonable range. The parameters  and  were not changed throughout the 

task. For each target trial during the BCI experimental runs, the subject was presented with a cursor in 

the center of the screen and a target at either the top or bottom of the screen (Figure 6A).  When the 

patient imagined moving or actually moved his tongue, the cursor would be driven upwards and when 

the patient was at rest, the cursor would move downwards (according to the relation above). If the 

cursor was successfully directed to the target or 7 seconds elapsed without cursor/target collision, the 

trial was reset and a new target was presented. Target locations at the top or bottom of the screen were 

presented in randomized order, but in roughly equal number during each experimental trial.  A set of 40 

consecutive, randomized target presentations (“trials”) were performed during an experimental run.   

Specific instructions were given to imagine the kinematics of the movement (“kinesthetic imagery”42).  

Sublingual differential EMG was used to verify that there was no muscle movement during the imagery-

based experimental runs.  

2.3.4 Offline Analysis 

The signal was re-referenced to the common average potential across all electrodes at each 

sample.  The data was then segmented into blocks from three types of periods: when the upper target 

was presented, when the lower target was presented, and when no target was presented.  The power 

spectral density (PSD) for each block was calculated using Welch’s averaged periodogram method with 

the fast fourier transform (FFT) and a Hann windowing function.  The length of data for the FFT was a 

1000 sample window, and windows were overlapped by 900ms. The spectra from each block were 

normalized by dividing through by the mean power across all blocks (of all types combined) at each 
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frequency (effectively whitening the spectra), and then the log of the summed values across the 80-

100Hz range were determined as shown in the figures.  

2.3.5 Online Control 

For each electrode in the grid, we continuously calculated the voltage PSD using an 

autoregressive technique43 for frequencies between 0 and 200 Hz (binned at 2Hz) for each trial and for 

the rest periods in-between trials.  The PSD was calculated from the previous 280ms of data, every 40 

ms.  Cursor velocity was calculated by comparing the power between 80-100Hz in electrodes at 

Taliarach location <58, 13, 28> and <58, 4, 33>.  The position was then updated according to 

, as described above.  

2.4 Results 
After the initial learning trial (difference in power within the control band was significant at 

p<0.01), every subsequent overt trial had a significance of p<0.001 (bootstrap 105 iterations, comparing 

mean power between movement/imagery targets versus rest targets).  During all but one overt trial, 

target accuracy was 100% with the remaining trial at 97.5%.  Once control was demonstrated with overt 

control, imagery tasks were performed.  Due to the nature of the imagery task, it is not possible to 

ensure that every run or trial is performed in the exact same manner for each run.   The final run of 

imagery based feedback for each day during imagery (Figure 7) showed significant (p<0.001, bootstrap 

105 iterations) control, with accuracies of 20/2 (hits/misses), 19/0, 19/5, 14/4, and 17/2, compared with 

a randzom chance accuracy of 50/50. 

2.5 Discussion 
All previous brain-computer interface studies have used some form of adaptive algorithm. In 

this study, however, we have demonstrated that extended control of a simple ECoG-based BCI is 

possible with fixed parameters for a five day period, without recalibration, adaptation, or re-training. 

This suggests that the high-frequency ECoG signal is robust across several days. Previous ECoG studies 

20,24,25,44,45 were not able to explore this because of the limited time with this subject population. This 

finding suggests that ECoG-based BCIs can be implemented in an impaired subject population (paralysis, 

stroke, ALS, etc) for the purpose of prosthesis development. Furthermore, recent studies32 have 

demonstrated the potential to extract several simultaneous control signals from an ECoG array.  

For any long-term brain-computer interface applications such as prosthetic limbs, it is important that 

the neural signals used for control be robust and remain spatially and frequency-range stable over a long 

period of time.  Re-learning control parameters before every use of BCI applications may not be realistic 
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or feasible, thus a signal that is robust and stable over long periods of time would be an ideal candidate 

for a control feature. 

We have shown that it is possible to select a control feature in the high gamma range that is 

stable and robust over a long period of time.  This is an important result for future studies; studies that 

identify high frequency changes that are highly correlated with an experimental metric should not be 

instantly assumed to be spurious, transient activity patterns.  In the context of identifying the underlying 

patterns of cortical activity during dexterous movement, this suggests that if patterns of activity are 

discovered to be correlated with some type of muscle synergies  
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Figure 6 - A) Cursor control task – sequence of a successful trial B) electrode location on standardized brain; electrode used 
for control is highlighted C) Linear feature found during screening for electrode 44 (see B).  Blue trace is the power spectral 
density during rest; red shows the movement spectra.  The green line within 80-100Hz is the threshold set on the first day, 
was not modified during the 5 day recording session.  Note that the broad spectral shift within the chi band (75-150 Hz)  D) 
cortical plot of low and high frequency power, showing a broad decrease in power at low frequencies and a localized 
increase in high frequency power E) Four overt cursor control runs, showing the learning curve during the first day.  The 
second run was significant at p < 0.05 and the final two runs at p < 0.001 f) r

2
 correlation for a single imagery trial.  P-value 

for trial was p < 0.001. F)  r
2
 plot of frequency vs channel for an imagined control trial.  High frequency band activity can be 

seen from 60-200Hz on a number of channels, including the control channel 44. 
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Figure 7 - Final control trials for imagery and overt movement – Points represent total power within the control 
band for each individual run during the final trial across five days.  Vertical bars separate each day; horizontal 
bars represent the geometric mean for all runs each day.  Failed runs (where the target was not reached by the 
cursor) are shown as squares.  During movement and imagery (red), and increase in power can be seen for all 
runs in comparison to rest runs (blue).  All trials were significant at p < 0.001 (bootstrap 10

5
 iterations, comparing 

mean power between movement/imagery target trials versus rest target trials). 
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3 Chapter 3 – Exploring the Returns on Miniaturization 

3.1 Motivation 
Higher density ECoG grids with the same number of electrodes as those used clinical are 

restricted in the amount of cortex that is covered by each implant.  It is critical to show that the new 

microgrid design will be sufficient to cover the entirety of primary hand motor cortex. Miller et al. and 

Scherer et al. have demonstrated that HFB activity observed during digit flexion is usually on 3-4 

electrodes on standard 1cm ECoG implants, with up to 4 showing preferential activity for individual 

digits46,47.  In all instances, electrodes showing characteristic activation for individual digits were 

proximal in grid space, with the largest end-to-end Euclidean distance of 1.73cm, and largest area 

covered of approximately 2cm2.  Current grid designs used in clinical settings are usually 8x8 electrodes 

spaced at 3mm, or 2.1mm on a side.  It is possible that by adding additional electrode contacts over this 

2cm2 surface, much more robust and accurate classification could be performed. 

In September 2010, a pediatric patient was admitted to Seattle Children’s Hospital to undergo 

electrode implantation for the purpose of epileptic seizure foci localization.  Though this standard 

surgical protocol has been regularly used in adults and recently with increased frequency in pediatric 

patients, at 2.5 years old this subject was unique in that he was significantly younger than the standard 

pediatric patient population.  In spite of recurrent generalized tonic-clonic seizures, physiological and 

musculoskeletal development was normal for a child his age.   

The clinical protocol for localization of epileptogenic tissue is to implant an array of electrodes 

covering a large area of cortex that is suspected of initiating seizure activity.  However, due to this 

subject’s pathology – the seizures were suspected to be coming from an area of cortex in close proximity 

to primary motor cortex – the standard resolution clinical grids were insufficient.  Instead of the 

standard 3mm diameter electrode grid spaced at 10cm center-to-center, a grid of electrodes spaced at 

5mm center-to-center was implanted.  This presented the unique opportunity to study the neural 

dynamics of motor cortex at a higher spatial resolution than previous studies we had performed. 

In this chapter we present a unique case study that serves as the basis for our future work into 

investigating unique spatially distributed patterns of cortical activity across primary hand motor cortex 

using higher resolution, non-standard ECoG arrays. 
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3.2 Methods 

3.2.1 Subject 

The subject was a 2.5 year old right handed male admitted to Seattle Children’s hospital in 

Seattle, WA for generalized tonic-clonic seizures.  He was implanted with two subdural electrode arrays 

for the purpose of seizure foci localization (see Figure 8).  Twenty-four hour cortical recordings were 

performed for four days, after which the grids were explanted and epileptogenic tissue was resected.  

Both parents gave informed consent for their child to participate in this study in accordance with Seattle 

Children’s Institutional Review Board and HIPAA compliance. 

3.2.2 Electrode array 

 Due to the suspected proximity of the suspected seizure foci to primary motor cortex, 

two smaller grids than are normally used for clinical protocols were implanted.  Each grid contained an 

8x8 array of 3mm disk platinum electrodes spaced at 5mm center-to-center diameter, smaller than the 

clinical grids previously used Figure 10.  This allowed the grid to cover a total of 12.25cm2. 

3.2.3 Biosignal recording  

The superior, inferior 64 contact ECoG grid was sampled at 1200Hz using a g.USBAmp biosignal 

amplifier (G.Tec, Austria).  Signal acquisition and cue presentation was operated using the BCI2000 

software suite48.  Signals were recorded hardware filters of 0.1Hz high-pass and 500Hz low-pass and a 

notch filter of 60Hz. 

3.2.4 Experimental Protocol 

 With the grid implanted over an area of the brain predicted to be associated with hand 

motor cortex, we opted to perform an overt hand motor task.  In young adult and adult subjects, this 

would entail a visual cue to appear on a computer screen instructing the patient what to perform (i.e. 

gross hand movement or individual digit flexion).  Because the subject was young and incapable of 

understanding and following directions, this usual visual cue based experimental paradigm required 

modification.   

To elicit hand movement, we chose to select three items the child showed interest in and 

enjoyed and presented them one at a time to the subject (Figure 9).  At a visual cue to the researcher 

that occurred 4s after the previous, they would select one of the three object and move it into reachable 

range of the subject.  In response to the presentation of the object, the child would reach out and grasp 

the object.  After 4s, the object was taken back out of range of the subject’s reach and consequently the 
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subject released the object.  Each object presentation was done in such a way as that would likely elicit 

the same, repeatable object-specific grip by the subject. 

Each of the three objects was selected to require a different, unique level of grasping 

coordination (Figure 8).  The first object was a large, multicolor stuffed toy snake.  When presented with 

the toy, the subject would reach out and grasp the object in a palmar, “power grip” as decribed by 

Landsmeer set al49.  This grip involved extending all digits in a splayed fashion on approach and, upon 

reaching the object, partial yet incomplete closing of the hand.  The next object was a vertically-oriented 

ball-point pen that required the subject to extend all digits in a splayed motion similar to the snake.  On 

closing, the subject would simultaneously contract all digits around the pen, completely enclosing 

around the pen with the thumb resting on top of the other four digits.  The last object was a 6cm by 6cm 

square sticker of the subject’s favorite cartoon character “Dora The Explorer”.  It was presented so the 

subject would perform a four-finger long-prismatic grip with the thumb and fingers on opposing sides of 

the sticket50. 

Recording the exact position of the subject’s had was proven impossible due to the small size of 

the subject’s hand in relation to any available datagloves; no amount of stretching or modifying of the 

adult-sized gloves allowed any to reasonably fit his hand.   

3.2.5 Analysis 

Recorded signals were re-referenced using common average re-referencing: 

  ̇ ( )    ( )  
 

  
∑  ( )

  

   

 3.1 

Where   ( ) is the raw recorded signal.  Each channel was then notch filtered for 60, 120 and 

180Hz line noise and band-passed for high gamma (75-200Hz) using a 4th order butterworth filter.  

Movement epochs were designated as 1750ms after visual cue onset to 1750ms after cue 

disappearance.  This delay was introduced to account for the time taken during presentation and 

retrieval of each object. 

Continuous-time power for each channel was calculated by applying the Hilbert transformation 

to each channel, taking the absolute value of the result to attain the amplitude, and squaring the result 

to continuous achieve power.  Since signal power is distinctly non-Gaussian, the log power is calculated 

to make the results approximately Gaussian.   Once in log space, the each signal was smoothed using a 

250ms Gaussian window.  For each object presentation  , the mean log power was calculated for every 

channel  : 
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Where    and    are the beginning and end samples of the presentation epoch and   ( ) is the 

log normalized power at sample  . 

Overall Z-scores were calculated for each channel   and object   with respect to resting 

(inactive) epochs: 
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 3.3 

Where      is one of the three objects,      is the number of presentations of that object, 

      is the mean of the log power epochs, and      is the standard deviation of log power of rest 

epochs.  In addition, time-course z-scores were calculated based on rest: 

   ( )  
  ( )        

     
 3.4 

3.3 Results 

3.3.1 Spatial Distribution 

Each grip type elicited a unique pattern of activity when averaged across all epochs of the same 

grip type (Figure 11).  Activity during Dora was higher and wider spread than Pen or Snake, with one 

electrode maintaining an average of 4.71 standard deviations above high gamma log power during res 

(inter-trial intervals).  Pen in turn showed a lower maximum than Dora, but presented a different 

average spatial pattern which was, on average, higher than Snake.  Though snake did not show the 

broad activity that Dora or Pen did, 10 electrodes did remain above 2 standard deviations away and 5 of 

those averaged greater than 3. 

3.3.2 Temporal Activiy 

Because we were unable to record the position and timing of the subject’s hand motion due to 

the size of his hand, temporal plots were time-locked to cue onset.  Figure 12 demonstrates that even 

though precise time-locking was not possible due to the variations in object presentation intervals, there 

was still robust increase in high gamma activity during all three object grips.  Onset of power increase 

was approximately the same in all object grips at about 2s, though the peak power occurred a different 

time points for each grip (Figure 13). 
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3.3.3 Classification 

Table 1 shows the results of 10-fold cross-validation results for both K-Nearest Neighbor (KNN) 

and Support Vector Machine (SVM) classification.  Our initial classification attempt was performed using 

the average epoch power for all electrodes as input, and all three object grip types as output, classified 

by KNN.  This resulted in an average of 74.4% accuracy.  Culling the input to only include electrodes with 

high levels of activity (13, 20, 21, 22, 29, 30, 35, 36, 37) showed a decreased classification rate of 60%, 

suggesting the additional variability in input aided classification.   

Binary KNN classification using all electrodes showed that Pen/Snake was classified correctly 

75% of epochs, Dora/Snake at 95%, and Dora/ Pen at 75%.  To explore whether the classification results 

could be improved through the use of a different algorithm, we applied support-vector machine (SVM) 

classification to the binary classification.  Pen/Snake was classified correctly 70% of the time, 

Dora/Snake 80%, and Dora/Pen at 65%.  This suggests that the additional complexity added by the SVM 

algorithm did not aid in classification and in fact lowered classification across all types. 

3.4 Discussion 
During the course of the experiment, a marked change in the subject’s behavior was observed.  

Initially during the initial few presentations the subject would reach out and grasp the object and 

attempt to remain holding as when the object was removed from reach.  However, after repeated 

presentations the subject began to perform arm motions suggesting that he was offering the object he 

was holding back to the researcher.  Further, when the object was removed from his reach, he released 

grip voluntarily.  Though investigation of this behavioral change is beyond the scope of this study, it is 

indicative that the subject successfully performed the gull range of grip/release that this study hoped to 

elicit. 

3.4.1 Unique activity levels 

The spatial patterns associated with each grip suggest an interesting pattern.  Activity patterns 

produced during the snake grasp are much lower than the others.  Because the snake is plush-like and 

large, the precision required during grasping it is subjectively lower than the other objects and the 

lowered levels of activity reflect this.  On the other hand, the grip motion during pen grasping requires 

simultaneous coordination of distal digits and thumb, suggesting a high degree of dexterity is required 

and possibly elevated levels of neural activity or activation of broader motor networks; an idea 

supported by the increased mean activity vs the gross, uncoordinated movements required to grasp the 

snake (see Pen, Figure 11).  In contrast to the other two objects, the Dora sticker is wide in two 

dimensions but very thin in the third, requiring a four-finger prismatic grip with opposing thumb 
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pressure.  The concept of a prismatic grip on an object that is as flexible as a sticker requires balancing of 

opposing forces on the sticker by modulating muscle contraction and activity of both digits and thumb.  

Initiating and maintaining this type of dexterous grip would likely require more precision and 

coordination, with an correlated increase in cortical activity, a suggestion supported by the wide 

increase in activity during these grasps. 

Though the activity levels show an increase in activity level with increasing grip complexity, the 

spatial pattern is not uniform across grips.  Indeed, Figure 14 suggests that the relative power of some 

channels – even neighboring ones – varies greatly by object.  Neural activity recorded by electrode 21 

relative to electrode 35 was nearly identical for both Pen and Snake grips, but much higher for Dora.  In 

electrode 22 showed much higher activity relative to electrode 30 for Snake.  This suggests that not only 

are there different levels of cortical activity for each grip type, there is also a unique spatial distribution 

to the observed activity for different grip types. 

3.4.2 Temporal patterns 

In spite of the inability to time-lock the analysis on the onset of movement, there are still 

surprisingly strong patterns that can be seen in the temporal activity.  Additional confounding factors 

such as the variable reaction time of the researcher after cue was presented, varying attention levels of 

the subject, and lack of movement onset data would suggest that any patterns that do end up being 

observed are robust across trials.   

Indeed, Figure 13 suggests that there is an initial burst of activity across at the onset of 

movement, followed by a short dip and a further increase.  Unique to the pen activity is a large increase 

in over 25 channels during initial movement as compared to the Dora and Snake grips, both less than 10 

for the first 250ms after grip onset.  All three grips reach a peak of 37 active electrodes at 2520ms.  

However, the prolonged increase in the number of active electrodes for the remainder of the grip 

suggests that continuous modulation is present during the prismatic grip that is not present in the less 

dexterous grips. 

In addition, it should be noted that classification was performed on average activity during the 

entire epoch, compressing the time domain of each epoch into a single value.  It is likely given the 

unique temporal activity of each grip type that classification could be much improved by taking into 

account the temporal variability of each channel during classification training and testing. 

3.4.3 Implications for miniaturizing 

The unique nature of this subject’s medical condition, clinical protocol, and implanted grids 

allows us to begin to explore the concept of grid miniaturization.  Activity levels identified during the 
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Dora grip suggest that if the same area of cortex had been recorded on a standard 10mm-spaced grid, 

approximately four electrodes would have shown the same changes in activity (Figure 15B).  This is 

consistent with the findings of Miller et al. and Scherer et al. that separable activity can be seen in 3 or 4 

electrodes in 10mm spaced grids.  By examining the total number of electrodes that show significantly 

increased activity, it is possible that an electrode array with electrodes spaced at 3mm center-to-center 

would cover nearly the entire area (gray area, Figure 15C) and show very high activity in upwards of 21 

electrodes.  With this target in mind, we will explore the fabrication and use of grids of this size in future 

studies. 

The presence of varying activity levels and unique spatial patterns suggest that it is likely that 

designing smaller, higher-density arrays would provide more detail and insight into the underlying 

neuro-encoding of dexterous hand motion.  
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Figure 8 – Electrode locations of implanted grids.  Both grids were 8x8 arrays spaced at 5mm center-to-center.  The superior 
posterior grid (red) was the grid used recorded during the experiment.  Electrode 1 was inferior posterior and electrode 8 
was inferior anterior.   The anterior inferior grid (green) overlapped the other grid with 24 electrodes not making contact 
with the cortical surface and as such was not recorded.  Ground and reference electrodes were placed epidurally over 
dorsolateral prefrontal cortex (blue).  Central sulcus is highlighted in yellow. 
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Figure 9 – Objects presented to the subject included a 6cm x 6cm picture of cartoon character “Dora the Explorer”, a ball 
point pen, and a stuffed toy snake.  Each was presented to the subject in such a way as to induce a 4-finger opposed 
prismatic grip, power grip, and gross envelopment grip, respectively. 
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Figure 10 – Relative size of the smaller 5mm grid (top right) relative to the standard clinical grids previously used (left). 
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Figure 11 – Spatial patterns of activity during each grip.  Electrode #1 is located in the upper left; #8 lower left.  Color 
indicates z-scored difference in log power from rest.  The maximum average z-score was in electrode 21 during the Dora grip 
at 4.71 standard deviations.  Unique patterns of activity can be seen for each object grip. 
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Figure 12 – Averaged time course z-score power for all 64 grid electrodes for each grip type, time-locked on visual cue.  
Electrode 1 is at the top of the y axis with electrode 64 at the bottom.  This arrangement is a form of an “unraveled” 8x8 grid, 
which can be seen in the apparent periodicity traversing the channels.  The visual was presented to the researcher at time 0, 
demonstrating that there was on average about 2000ms of delay before the subject activated motor cortex (due to object 
selection, presentation and reaction time).  Note that the Z-Score scale shown is broader than Figure 11. 
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Figure 13 – Number of electrodes over time that showed z-scores greater than 3 standard deviations away from rest  In spite 
of time-locking on cue (t=0), clear patterns can be seen during initiation, maximal peaks, and subsequent maintenance of 
grip position. 
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Figure 14 – Ratio of power between pairs of electrodes for each grip.  Certain electrodes can show preferential relative 
activity for a certain grip relative to others (i.e. 21/35 for Dora), or preferential relative suppression (13/29 for Snake). 
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Figure 15 – Estimated activity ranges.  Nine electrodes showed very high levels of activity (A, lower, red) during the Dora 
prismatic grip.  If the same cortical shape were to be recorded on a standard clinical grid (B), this would correspond to 
approximately 4 electrodes, or 1cm

2
, consistent with Miller et al. and Scherer et al.’s findings.  C) Same coverage based on a 

3mm–spaced grid, corresponding to a coverage of about 21 electrodes in the primary activation areas (red) and nearly all in 
the secondary activation areas (gray). 

  



www.manaraa.com

BIOENGINEERING University of Washington 2013 

 

52 Chapter 3 – Exploring the Returns on Miniaturization | Timothy Blakely – Doctoral Thesis 

 

Classification Type Channels Objects Accuracy 

KNN All Dora, Pen, Snake 74.4% 

KNN 
13, 20, 21, 22, 29, 30, 

35, 36, 37 
Dora, Pen, Snake 60% 

KNN All Pen, Snake 75% 

KNN All Dora, Snake 95% 

KNN All Dora, Pen 75% 

SVM All Pen, Snake 70% 

SVM All Dora, Snake 80% 

SVM All Dora, Pen 65% 
Table 1 – 10-fold cross-validation classification results for K-Nearest Neighbor and Support Vector Machine (SVM) 
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4 Chapter 4 – Spatial Acuity of High-Resolution ECoG 

4.1 Motivation 
In order to decode information the complexities of human motion, it is necessary to identify and 

separate the relevant signal from the background noise level of the brain.  The ideal signal-to-noise ratio 

recordings come from single-unit arrays.  These arrays have inter-electrode spacing of upwards of 

400um allowing the electrodes to record individual action potential spikes from single neurons51.  

However, these systems are significantly limited in the area of cortex they can cover.  Even with an 

electrode array with 256 of these electrodes spaced at 16x16, this would cover less than half of a square 

centimeter.  It has been demonstrated the areas associated with motor cortex can be as large as 

22cm^252, and while it is accepted that areas of motor cortex can be specialized to control individual 

muscle regions, limbs, etc, the area that is likely associated with hand motor cortex is likely much larger 

than what single unit grids can cover.  Missing areas of the cortex activated by volitional movement 

during experiments can lead to lowered decoding ability.   

In contrast to single units ECoG arrays can cover larger areas of cortex by design, as they have 

been developed mainly for identification and localization of seizure foci.  However, their inter-electrode 

spacing only allows for few electrodes to cover the regions of interest.  We propose that in order to 

attack this problem, a new form of ECoG grid needs to be developed: a high resolution (<5mm inter-

electrode spacing), wide coverage (>2cm2) array of surface electrodes.  Though in actually not containing 

any measurements less than 1mm, we call this type of array “micro-ECoG” in reference to its 

significantly smaller size relative to standard ECoG grid. 

A good initial test to see whether micro-ECoG arrays can provide the spatial fidelity and signal-

to-noise ratio required to study the dynamics of hand movement would be to apply such arrays to an 

area of the brain that is known to be spatially laid out over the cortex.   In this chapter we investigate 

the ability of miniature ECoG arrays to determine if they have the ability to identify the tonotopic 

organization of speech areas of the brain in addition to its ability to decode individual phonemes. 

4.2 Background 
A significant amount of human communication is done through speech. Language assimilation 

begins at an early stage in human development and is reinforced throughout the lifetime. However, the 

exact representation of this speech is yet unknown53,54. One of the initial forays into the area of speech 

representation in human cortex was the use of tonotopic maps55–57. Further investigation by Diesch & 

Luce illustrated that tonotopic organization is insufficient to explain specific phoneme representation. 
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They showed that the N100m component responded differently when exposed to two-formant vowels 

and their decomposed formants separately and could not find sufficient evidence to suggest that the 

vowel source locations were linear combinations58. 

Diesch and Luce then investigated whether vowel formants F1 and F2 can interact at one or more 

early stages of the auditory pathway59. Neurons in the auditory pathway demonstrated the ability to 

respond to narrow info58rmation bands, effectively band-passing the auditory information to lower 

auditory areas. Investigating the possibility of early formant interactions in gerbils, Ohl et. Al found 

interactions as far away as 2000Hz and as close as 500Hz60. Wang et. Al approached the possibility of 

formant interactions from a spatial perspective in marmosets.  They observed distributed neuronal 

discharge patterns in the marmosets’ primary auditory cortexes from behaviorally relevant, species-

specific vocalizations61.  Due to the limitations in techniques available on humans at the time, it was not 

possible to get the same spatial resolution in humans.  Diesch proposed to use Euclidean distances 

between from evoked magnetic field measurements and found that the distance between the vowels ‘I’ 

and ‘u’ was further than the distance between vowels ‘a’ and ‘e’ in more than 60% of trials62.  In 2003, 

Eulitz et al investigated magnetoencaphalography (MEG) evoked N100m responses due to auditory 

queues.  Like the results observed by Diech, they determined that the acoustic vowel sounds generated 

by ‘a’ and ‘i’ were more spatially separated in comparison with the similar sounding vowels ‘e’ and ‘i’. 

In this paper we present a look at direct cortical surface potentials acquired via an 

electrocorticography (ECoG) microarray.  This microarray allowed us to look at frontal processing 

regions with a much greater spatial resolution than currently used ECoG grids (10mm spatial resolution).  

Surface potential changes were recorded during overt pronunciation of language-base phonemes at 

high spatial resolution to determine if core language phoneme pronunciation can be separated and 

classified. 

4.3 Methods 

4.3.1 Subject 

Because this study was an exploratory study using a new device and a new IRB protocol, there 

was only a single subject in this study.  The subject that participated in the experiment was a 46 year old 

left-handed, female, epileptic patient who was diagnosed with intractable epilepsy.  She was implanted 

with a 64 contact (8x8) subdural electrocorticography array and an 8 contact (8x1) single strip array for 

the clinical purpose of seizure foci identification.  The larger array was placed superiorly over the central 

sulcus, covering primary sensorimotor cortex, while the strip was placed anteriorly over prefrontal 
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cortex.  This left an area of cortex uncovered by the clinically relevant grids that included Broca’s area, 

an area commonly associated with speech generation63.   

4.3.2 Microgrid 

During the clinical array implantations, an additional experimental ECoG array manufacturedby 

Ad-Tech (Racine, WA) was placed over Broca’s area over left inferior frontal cortex (Figure 16).  This 

experimental grid contained 1.5mm diameter platinum electrodes spaced at 3mm center-to-center. 

Placement of this grid did not interfere with clinical mapping, as the seizure focus was determined to be 

in frontal cortex, significantly dorsal and anterior to the location of the miniaturized experimental ECoG 

array.  The density of electrodes in this array is significantly higher than previously used ECoG grids that 

have used inter-electrode spacing of 10mm25,64–66.   

4.3.3 Recording 

Leads from the experimental array were connected to four 16-channel g.USBAmp biosignal 

amplifiers (manufactured by g.tec, Austria).  Each amplifier bank was synchronized to sample at 1000Hz 

and referenced to a clinical sub-dural reference that was also used as ground.  After being converted to 

a digital signal in the ADC, each sample was recorded and saved by the software suite BCI200024,25,48. 

4.3.4 Task 

The subject was presented with a visual cue displayed on a monitor at the bedside.  The visual 

cue was there was the visual depiction of one of four phonemes: /Ba/, /Wa/, /Ra/ or /La/.  During the 

stimuli presentation, the patient was instructed to repeat the phoneme 3 times within the 2 second cue 

period.  Each experimental run consisted of 2 paired phonemes (/Ba/-/Wa/, or /Ra/-/La/).  Each cue was 

repeated 30 times for each phoneme, presented in random order.  After the cue was presented for 2 

seconds, there was a subsequent 2 second pause. 

 

4.3.5 Signal Processing 

The electrode recording was transformed from the original 64 input array into 112 pairs of 

nearest-neighbor pairwise difference changels, resulting in 112 “virtual” electrodes.  This re-referencing 

was performed so that any fluctuations in potential found were as local as possible, minimizing both 

common-mode input and noise.  Signal processing was performed offline after data collection in the 

Matlab analysis environment.  Data recordigns were notch filtered at 60, 120, and 180Hz  to eliminate 

the presence of line noise using a 3rd order Butterworth filter.  We computed the Fast Fourrier 

Transform (FFT) for each 2 second cue interval and each 2 second rest interval.  The data from these 
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epochs were transformed using overlapping 256ms windows (equivalent to 256 samples) with 100ms 

step sizes between them.  In addition, a Hann window was imposed on each data window to attensute 

edge effects. Each spectrum from each phoneme cue and rest period was averaged by the mean 

spectrum throughout the trial for each virtual electrode.  More information on the technique can be 

found in previously published papers24,2526. 

4.3.6 Feature Selection 

The mean power was calculated in each electrode in 6 discrete frequency ranges: low alpha (7-

12 Hz), high alpha (10-13Hz), beta (14-25Hz), low gamma (26-35Hz),  gamma(36-70Hz),  and high gamma 

(70-150Hz).  The high gamma values were used to select the ten best channels, by r2 value, for 

discriminating /Ba/ vs /Wa/ and /Ra/ vs /La/, independently.  Interestingly, these channels were 

different for each pair, suggesting that the miniature array is capturing the level of “phonemotopy”62, a 

finding which was strongly supported by classification result. 

4.3.7 Classification 

We performed binary classification between paired phonemes, using the 6 frequency ranges, in 

10 different channels at a time.  The ten channels used can be seen in Figure 17c, in green for /Ba/ vs 

/Wa/ and red for /Ra/ vs /La/.  Classification was performed by using a linear support vector machine 

with 4-fold nested cross-validation67. 

4.4 Results and Discussion 
Using the ten red electrodes shown in Figure 17c, /Ra/ and /La/ could be discriminated with 75% 

accuracy, but /Ba/ and /Wa/ could only be discriminated with 48% accuracy, or slightly worse than 

chance.  Conversely using the ten green electrodes /Ba/ and /Wa/ could be discriminated with 70%, yet 

Ra and La were correctly identified 47% of the time.  This demonstrates that specific phonemes can be 

classified and discriminated using a high resolution array and that discrete sub regions – as small as 

3mm away from each other – have preferential phonemotopic representation in Broca’s area.  It should 

be noted that the orientation of the grid in Figure 17 is flipped about the horizontal axis when compared 

to the x-ray image in Figure 16. 

 

Figure 17b shows differentiation between phonemes /Ra/ and /La/ clustered towards the center 

of the grid while electrodes showing statistical differences between /Ba/ and /Wa/ are spatially distant 

towards the bottom of the grid in Figure 17b.  This observation has two implications.  It is possible that 

phonemes are represented in distinct spatial locations on the cortex.  Discrete phonemes have, until 
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now, been too spatially close to differentiate using common 10mm-spaced grid resolutions, and far too 

low to below the resolution threshold of electroencephalography (EEG).  Using high spatial resolution 

ECoG grids, we have shown that there is separable information within the cortical potential at electrode 

spacing resolutions of 3mm.   

 

In addition, the close proximity of some of the pairs of green and electrodes suggests that there 

is mutually independent information being collected and recorded at neighboring electrodes.  Having 

electrodes as close as 3mm yet containing independent signals would allow many more electrodes to 

sample the same amount of cortical space.  This increases the dimensionality of the recorded neural 

signal, which may provide for greatly increased decoding and classification ability when applied to brain-

computer interface systems.  It should be noted that because this was a new type of experimental array, 

the entire array was designed and arranged by hand, possibly limiting the accuracy of electrode position.  

Future arrays would likely be arranged by industrialized processes and thus provide an even more 

uniform center-to-center distance. 

Our results indicate that the best chance for decoding unknown, highly complex interactions of 

networks of neurons – such as those in primary motor cortex that drive volitional hand movement – 

would be to use this type of high resolution ECoG array. 
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Figure 16 - Left – The miniature ECoG array can be seen on the left, with a quarter to demonstrate the scale.  The electrodes 
were spaced 3mm apart from center to center.  Right – The subject’s x-ray demonstrates the clinical array (larger electrodes, 
spaced 10mm) and, over Broca’s area, the microgrid with a spacing of 3mm.  The higher spatial resolution of the grid allows 
each electrode to average over a smaller number of neurons, allowing more distinct potential recordings from smaller 
populations of neurons. 
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Figure 17 – A) Topographic signed r-squared cross-correlation maps showing significant differences for phonemes /Ra/ and 
/La/ within the center of the grid.  Spatial resolutions as small as a single virtual electrode (created by pairwise re-
referencing) show significant correlations. B) Topographic signed r-squared cross-correlation map for /Ba/ vs. /Wa/, showing 
significant differences towards the bottom of the grid, spatially separate from the significant electrodes in /Ra/ vs. /Wa/. C) 
Each plus represents the virtual electrode generated by pairwise re-referencing the electrodes(shown as circles).  The 10 
virtual electrodes that were used for classification for /Ra/ vs. /Wa/ are marked as red squares, with the virtual electrodes 
used for classifying /Ba/ vs. /Wa/ outlined by green diamonds. 
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5 Chapter 5 – Synergistic Components of Grip 

5.1 Motivation 
It is a simple matter for humans to reach out, grasp, and pick up an object.  While little 

conscious thought may be given to the task, the control dynamics and kinematics behind the motion 

planning, musculoskeletal activation and force production are far from simple.  The mechanics of 

grasping in humans varies depending on the object being manipulated.  During reach-to-grasp 

movements, there is first a continuous opening of the fingers and thumb sufficient to encompass the 

object, followed by a gradual closing of the grip around the object until contact is made.  Studies have 

observed that this pattern is robust when grabbing objects, with maximum aperture size occurring 60-

70% of the way through the complete motion68,69.  However, other tasks such as typing on a keyboard, 

writing with a pen or holding a ball in the palm of your hand can not be described using simple aperture 

metrics. 

Any model applied universally to human grasping motions must take into account the 

observation that objects can be grasped and held in several different ways, with the final grip position 

directed by interactions between both motor and visual pathways.  Modeling the multiple degrees of 

freedom in the human hand requires exploring how individual finger joints move in concert with one 

another in a coordinated fashion.  Because little conscious attention is paid to the movement of 

individual joint angles in the hand during dexterous activity, researchers have often presumed that the 

human brain directs coordinated digit movement through combinations of motor primitives encoded at 

the cortical level.  Though studies of hand posture performed with electromyography (EMG) and motion 

capture provide evidence to suggest that these motor primitives exist, no experiments have been 

performed in humans that record synchronized cortical activity and generation of motor primitives due 

to ethical and safety concerns. 

Many studies have provided evidence to support the hypothesis that there is a basic set of 

underlying hand motion synergies that are task independent.  Thakur explored this in unconstrained set 

of hand postures via blinded haptic exploration70; Santello identified synergistic hand poses during tool 

use71; Kawato and Wolpert reviewed literature exploring the creation and integration of sensorimotor 

movement models within the central nervous system72,73.  It is likely that the cortex does not direct 

individual joint angles directly; rather it operates in a lower dimensional space whose output is 

translated into higher order muscle forces later on in lower parts of the central and/or peripheral 

nervous system. Thus, performing dimensionality reduction on the high DOF metrics of hand movement 

may elicit the underlying descending cortical state space.  
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5.2 Experimental design 
 Though the overarching goal is to be able to estimate and reconstruct the position of 

the hand from cortical signals, it is not necessary to record neural activity from the brain to determine if 

joint angles can provide synergies.  Employing healthy subjects in this study addresses two concerns: 

that the subjects do not have an abnormal pathology that may affect their synergy generation (as 

opposed to the epileptic subjects studied in cortical electrocorticography studies), and that our target 

population for this study is readily available and can be performed in a controlled setting. 

5.2.1 Dataglove 

 Figure 18 shows the dataglove; a right-handed 22 degree-of-freedom (DoF) Cyberglove 

II (CyberGlove Systems, San Jose, CA).  Each DoF records movement of the hand via an array of resistive 

strips that vary electrical resistance when flexed (see Figure 19).  Two strips cover the joint of the 

thumb, and three joints cover the proximal, medial and distal joints of each remaining finger.  In 

addition, four measurements are taken of ab/adduction between each pair of fingers, one for thumb 

extension/flexion, one for palm roll and two for ab/adduction and flexion and extension of the wrist, 

giving a total of 22 values per sample.  It should be noted that the Cyberglove does not record joint 

angles directly, rather an 8 bit value corresponding to the resistivity of the strips.  Figure 20 

demonstrates that this mapping is approximately linear, and thus a direct mapping from recorded values 

to joint angle for the  th joint can be derived as follows: 

      
    ̈     

 ̈       ̈     
 5.1 

where    is the recorded value,  ̈      and  ̈      are the maximum and minimum recorded 

values during the calibration process (described below) and    is the range in radians the joint went 

through during calibration. 

To account for the variability is subject hand side and varying fit of the glove across subjects, we 

developed a calibration process to ensure that the values recorded could map directly onto joint angles.  

We identified 12 different poses that identified the limits  ̈      and  ̈      for all of the possible 

recorded values.  For each pair of poses, we calculated the approximate range of motion    in radians 

unique for each joint, allowing the full joint angle vector  ̂ to be determined. 

Because the dataglove’s data connection runs over a 115200 baud serial connection, the 

maximum recording frequency of the dataglove is approximately 135Hz.  This limitation does not prove 

problematic in this analysis, but because the ECoG recordings in later chapters are captured at a 

sampling rate of an order of magnitude higher it is necessary to upsample and interpolate the recorded 



www.manaraa.com

BIOENGINEERING University of Washington 2013 

 

62 Chapter 5 – Synergistic Components of Grip | Timothy Blakely – Doctoral Thesis 

 

glove data to match the sampling frequency of the bioamplifiers.  This is done by applying piecewise 

cubic Hermite interpolation (PCHIP) between the recorded dataglove samples (See Figure 21).  Applying 

PCHIP interpolation is possible due to the inherent limitations of biological systems.  The dataglove is 

sampled at 135Hz, or approximately 7.4ms between samples.  Volitional movement of musculoskeletal 

systems can be modeled as an approximate bell curve model and as such requires a period of 

acceleration and deceleration between movements 74.  The 7.4ms in between samples is simply too 

short for the subject to make large movements that cannot be approximated by a cubic interpolation.   

5.2.2 Experimental Design 

 Subjects were placed in a closed room in the building which varied by subject, though all 

rooms were graduate student offices that contained objects typical of an office setting such as 

computers, coffee mugs, books, pens, etc.  The subject was instructed to don the dataglove and move 

about the room manipulating and grasping objects in a manner they thought was appropriate for 

everyday use.  As the subject moved about the room manipulating and lifting objects, the dataglove 

recorded the simultaneous positions of all 22 joint angles of the glove.  No additional instruction was 

given so that the subjects would go about grabbing objects in a natural way, moving through a natural 

joint state space.   Data was collected for a period of 60 seconds. 

5.2.3 Synergy Generation 

Principal component analysis was performed in a similar way to previous studies75.  Data frames 

from the glove were combined into one 22-by-N vector.  If   ( )      is joint angle   of the 22 possible 

joint angles, a vector through the 22-dimensional space is of the form 

 ⃑ ( )  [  ( )   ( )   ( )    ( )], with each individual point represented as   ( ).  Vectors at each 

time point collected during the object grip data collection are used to construct the covariance matrix 

     
 

∑ ( )   
∑∑( ⃑  ( )   ̅)( ⃑  ( )   ̅)

 
 ( )

    

 5.2 

nP  is the vector associated with the n th object for all time points [1, ]nt T .  Eigenvalues and 

eigenvectors associated with the 69-dimensional covariance matrix in equation Error! Reference source 

not found. will be calculated and sorted in descending order of eigenvalue ie .  Hand postures associated 

with each eigenvalue can be calculated as a scalar deviation from the average hand posture P , resulting 

in hand posture i iH P E   for eigenvector iE  and scalar .  The hand postures with the highest 
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eigenvalues contain the most variance from the mean hand pose, according to the scalar .  The linear 

space defined by these hand poses can be found for any combination of m eigenvectors by  

       ̅                     5.3 

To calculate a time-course contribution of recorded hand poses from each synergy, eigenvectors 

that account for 95% of the variance in hand posture according to normalized eigenvalues are projected 

onto the recorded joint angles: 

   ( )   ⃑    ⃑ ( ) 5.4 

Where    is the eigenvector associated with the principal component   and P  is the 22 byT  

vector  ⃑ ( )  [  ( )   ( )   ( )    ( )].  This gives a scalar representation of the contribution of 

synergy   at a given time point, known as the hand synergy timeseries   . 

At any given time  , the total variance of the system is: 

       
 ( )  ( ( )   ̅) ( ( )   ̅) 5.5 

Where  ̅ is the mean hand position in joint angle space.  The percent of variance captured for 

the first   vectors can be found by: 

   
 ( )  ∑[( ( )   ̅)   ]

 

 

   

 5.6 

5.3 Results 

5.3.1 Joint Correlations 

Correlation measurements were calculated for the entire duration of the data collection.  The 

distal joints of all fingers were highly correlated across all fingers with lower correlation values in the 

thumb.  (see Figure 22).   Groups of high correlations can be seen in the correlation matrix, indicating 

that while the distal joints themselves may be correlated (#s 5,6,7,8,9,10,12,13,14,16,17 and 18), their 

correlations to ab-/adduction is not as high.  In contrast, correlations across ab-/adduction joints 

(4,11,15, 19) significantly higher than with the distal joints.  A large range in correlations suggests that 

the synergies generated using linear principal component decomposition may well describe the system. 

5.3.2 Synergies 

We identified a total of 21 different possible synergies that described the total variability of joint 

angle observed during room exploration.  In both subjects, the first 7 principal components accounted 

for >90% of variance and a total of 10 principal components accounted for >95% of the total variance 

observed (Figure 23).  Neither subject demonstrated a synergy that described more than 50% of the 

variance. 
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Projecting along the synergies of subject 1 (Figure 24) shows that the first synergy identified 

primarily is consistent with a “power grip”76,77, identified by the distal joints of the fingers curling in and 

extending in unison.  In contrast, the thumb does moves much less in the first synergy than subsequent 

synergies, as seen in Figure 24.  By adding the contribution of all 21 synergies together, we confirm that 

the full principal component decomposition does indeed describe the full variance observed (Figure 25). 

5.3.3 Contribution over time 

The contribution over time was calculated as per Thakur et al  (Figure 26)75.  While most of the 

variance is accounted for by the first synergy, subsequent synergies can be seen contributing over short 

durations.  On average, the first 10 synergies contribute on average >95% of the variance.  However, on 

occasion there are large drops in the contribution of the first 10 components, suggesting that there may 

be something about this pose. 

5.3.4 Reconstruction Error  

Hand pose was reconstructed over time by summing the contributions of the first   synergies.  

Figure 27 shows the actual hand pose at one time point in comparison to the reconstructed pose based 

on synergies.  The mean-squared error (MSE) by reconstructing the pose from only the first principal 

component is significantly higher than when adding subsequent synergies (847 vs 276, 235, 226 and 

221).  It should be noted that while in theory reconstructing the hand’s position from all 21 possible 

synergies should result in the original pose, this is not the case.  The full-synergy MSE is 1.56, which 

appears to be due to floating-point inaccuracies inherent in limited-precision computers and introduced 

during the decomposition and reconstruction process. 

5.4 Discussion 

5.4.1 Cooperative movement in joints 

The fact that the wrist joints were negatively correlated with distal joints of the fingers suggests 

that as subjects grasp and manipulate objects, there is an agonist/antagonist muscle relationship 

between wrist flexor muscles and distal curl muscles.  This correlation also suggests that as the subjects 

grasped objects, they most likely approached and grasped using a palmar grasp, with the wrist flexor 

muscles contracting and lifting the palm of the hand. 

5.4.2 Synergy Contributions 

None of the synergies in either patient accounted for more than 45% of the variance, a 

significant difference from those observed by Thakur et. Al75.  In their studies, the first principal 

component accounted for approximately 58% +/- 8%.  This suggests that synergies identified through 
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joint angles may contain more mutually independent information than those found using Cartesian 

coordinate recordings.  Further evidence of this is indicated by the cumulative eigenvalue metric 

observed in this study.  Though both studies required the first 7 principal components to account for 

>90% of the variance, the first synergy – the synergy that accounted for most of the variance – was 

lower when PCA decomposition was performed on joint angles directly.  This suggests that even though 

joint angle space is a mathematical subset of Cartesian space, synergies identified in joint angle space 

may be even better candidates for motor cortical primitives than those identified using Cartesian 

coordinate recordings. 

Another unique difference can be seen in the normalized contribution of each synergy in Figure 

28.  Thakur et al. showed that their synergy contribution curve followed a near-perfect inverse 

logarithmic curve.  In contrast, the normalized eigenvalues identified here show two observable 

“transition” points along the principal components.  When considering the log normalized contribution 

of each synergy (Figure 28), subject 1 appears to have a significant drop in contribution between 

eigenvectors 8 and 9, whereas the accompanying drop in subject 2 occurs between synergies 7 and 8.  A 

second significant deviation from logarithmic contribution occurs between synergies 12/13 and 11/12 

for subjects 1 and 2, respectively.  Though the number of subjects in this study is too small to come to a 

definitive conclusion, it suggests that further study may reveal a subset of components of grip in joint 

angle space that may be common across subjects. 

5.4.3 Synergies as a unit of motor control 

The results of this paper demonstrate two key points.  First, though joint-angle space is a 

mathematical subset of Cartesian space (i.e. a mapping from one to the other can be created if the size 

of each bone is known), it was not known whether biokinematically sound synergies existed in this space 

nor if those relationships could be identified by linear decomposition.  Our results show it is possible to 

identify plausible synergistic movements through measuring hand pose in terms of joint angles directly.  

And secondly, our identifying synergistic motions during complex, free-form manipulation sets up the 

possible underlying components of dexterous motion at the biokinematic, musculoskeletal level.  

Further studies are needed to determine whether these kinematic components are generated at the 

level of motor cortex or solicited further down the central or peripheral nervous system.  Other recent 

studies have begun to shed light that these movements are actually generated by primary motor 

cortex78.  Even if we cannot identify the way motor cortex does encodes motion, synergy generation is 

inherently a form of dimensionality reduction and as such may be able to more accurately be mapped 

from cortical activity via regression. 
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Figure 18 – CybergloveII dataglove used to record joint angles 

  



www.manaraa.com

BIOENGINEERING University of Washington 2013 

 

68 Chapter 5 – Synergistic Components of Grip | Timothy Blakely – Doctoral Thesis 

 

 

Figure 19 – Location of the 22 resistive strips.  Thumb flexion is captured by 1, 2 and 3; index flexion by 5, 6, 7; middle by 8, 9, 
10; ring by 12, 13, 14; and pinky by 16, 17, and 18.  Ab/adduction measurements between thumb and index are captured by 
4; index and middle by 11; middle and ring by 15; and ring and pinky by 19.  Palm roll is measured by 20.  Wrist dorsiflexion 
and ab/adduction are measured by 21 and 22 respectively. 
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Figure 20 – Mapping between joint angle and sensor reading.  Measurements were taken at joint angles of 0, 30, 60, and 90 
degrees.  For all fingers, the mapping is linear, indicating a linear mapping between sensor readings and joint angles can be 
obtained. 
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Figure 21 – Sample recordings on the left.  A) Values for each sensor.  Note how each sensor does not return to the same 
value during periods of rest.  B) The blue trace shows the recorded values from the dataglove.  Due to the low sampling rate 
of the dataglove, the data is smoothed using cubic Hermite interpolation (red trace). 
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Figure 22 – Cross-joint correlations.  Groupings can be observed for each finger and high correlations can be seen across all 
fingers except thumb.  Wrist flexion shows a negative correlation with fingers, indicating that palmar grip was used most 
often during exploration. 
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Figure 23 – Contributions of each principal synergy identified from each subject.  A) Normalized eigenvectors showing the 
total contribution of each synergy to the variance seen.  B) Cumulative sum of all normalized eigenvectors.  For both 
subjects, 7 principal components cover just under 90% of the data (consistent with Thakur et al., and 10 components cover 
95% of total variance. 
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Figure 24 – Projection of the first five synergies of subject 1.  The first synergy covers more than 40% of all movement 
observed.  The majority of movement along the synergy is the fingers flexing and extending in unison.  The second synergy, 
however, shows significantly more movement in the thumb than the first.  Synergy 3 shows nearly all of the movement 
contributed by the thumb, which ab- and adducts greatly along the synergy.  Synergies 4 and 5 involve movements of all 
digits. 
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Figure 25 – Reconstruction of two joint sensors over time (thumb top row, index proximal joint bottom row).  The recorded 
positions (green) show significant differences from the reconstructed pose (red) created by just the first principal 
component.  However, adding subsequent synergies into the reconstruction rapidly increases the accuracy of both the 
thumb and index.  By adding all 21 synergies together, we confirmed that the predicted traces match the recorded traces 
(right column) for both joints. 
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Figure 26 – Contributions over time for individual synergies.  Normalized contributions to hand pose vary with time.  Adding 
contribution of the first 10 synergies (black trace) shows that on average they capture 95% of the variance.  However, at 
times the remaining 11 synergies can briefly contribute as much as 40% of the pose, as evidenced by the dip in the 
cumulative trace. 
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Figure 27 – Recorded hand pose (green) and reconstructed hand pose (red), and their associated mean-squared error with 
respect to all 22 joint angles.   
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Figure 28 – Log normalized contribution of each principal component. 
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6 Chapter 6 – Microgrid Recordings of Primary Sensorimotor Cortex 

6.1 Considerations and goals 

6.1.1 Basis 

The first two aims of this dissertation were designed to establish the feasibility of using micro-

ECoG arrays to investigate the presence of low-dimensional cortical components of dexterous hand 

motion.  Chapter 1 presented the foundation and previous research that laid the groundwork for this 

hypothesis.  Chapters 2 established that though the time-course fidelity of ECoG is high and shows 

significant variation, robust, reliable changes in high gamma activity (75-200Hz) can be seen.  These high 

frequency changes are indicative of a broad-band, noise-like processes that is correlated with an 

increase in underlying neural activity8.  Because this signal is stable and reliable, any results that we 

show in the following two chapters should not be directly dismissed as transient, temporary 

correlations. 

In the third chapter we discussed the possibility that ECoG signals may be able to provide the 

required spatial and signal-to-noise ratios required to decode dexterous hand movements in humans by 

leveraging higher resolution ECoG arrays.  Though the circumstances surrounding the subject were 

unique relative to the standard subject pool and clinical protocol, the higher-density arrays used in that 

study suggest that ECoG may be able to identify these patterns.  However, the resolution of the grids 

used in this chapter was insufficient and a new, smaller ECoG grid needed to be developed. 

Targeting the established tonotopic maps of auditory cortex, in Chapter 4 we investigated the 

use of a grid that has 9x the spatial resolution of standard ECoG grids.  Our hypothesis was that we could 

use a grid of this size to discriminate individual phonemes, yet had to demonstrate that despite each 

electrode being 67% closer than the 10mm-spaced grids, each channel was able to record mutually 

independent information. 

6.1.2 Design of the grid 

The primary consideration during the final design of the microgrid we developed for these 

experiments was inter-electrode spacing.  However, in practice the first decision that had to be made 

was the choice of either platinum disk contacts or microwires.  As the conductance of each electrode is 

directly proportional to the surface area of the contact, the microwires were likely to be problematic at 

100µm in diameter.  In addition, we had previously shown that disk electrodes could be reliably spaced 

at 3mm and still provide spatial fidelity (see Chapter 4).  Though the microwires provided the option to 

go to a higher spatial resolution, we were limited to 64 contacts based on the amount of ADC inputs in 
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our biosignal amplifiers.  Without the ability to add additional electrode contacts and the requirements 

from Chapter 3 that identified that the grid would optimally cover 4.41mm2, we worked with Ad-Tec 

(Racine, WA) to develop an 8x8 grid of 1.5mm diameter platinum electrodes spaced at 3mm center-to-

center.  Figure 29 shows the relative size of the microgrid relative to previously used clinical grids, and 

Figure 30 shows the final design and relative size of the grid. 

6.1.3 Intraoperative subjects 

A major change in this study from the previous studies is that the subjects were not epileptic 

patients.  Implanting a targeted microgrid over primary hand sensorimotor cortex is impractical or 

impossible, as it may have interfered with the placement of the standard clinical arrays dictated by the 

subject’s medical protocol.  Instead, we opted to record from primary motor cortex during the awake 

craniotomies performed as part of the clinical protocol for tumor resections.   

Working with these subjects has three main benefits.  First, the anaesthetized subject is brought 

out from full unconsciousness when the craniotomy window is open as part of the standard surgical 

procedure.  This allows us to place the grid on the cortical surface at a specific location of our choosing 

without impeding or disrupting any clinical recording.  Secondly, it provides a controlled experimental 

environment not usually found in bedside recordings that is free from distraction and other confounding 

factors.  Lastly, contrary to the epileptic patients we have previously studied the pathology of these 

subjects is well-known, well-documented and distant from hand sensorimotor cortex. 

In spite of these advantages, there are some disadvantages that accompany these subjects.  

Because of the minimal risk of the craniotomy remaining open for additional time, our recording 

sessions were limited to a maximum of 30 minutes in total including set-up and experimenting.  In 

addition, the craniotomy window is not necessarily over primary motor cortex and requires that the grid 

be slid underneath the dura out of view of the surgeon.  Though not dangerous to the subject, it 

impedes precise visual localization of the grid (see Figure 31).  The former can be mitigated through 

careful experimental planning.  We address the latter using real-time cortical mapping that allows us to 

quickly identify volitional changes in high gamma associated with hand movement (see Methods: 

Quickmap below). 

6.2 Methods 

6.2.1 Subjects 

Two subjects underwent surgery for tumor resection on their left temporal lobe at Harborview 

Medical Center, Seattle, WA.  After each subject was anesthetized and the head fixed into supports, a 
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craniotomy was performed on the left lateral inferior area of the skull.  The craniotomy window was 

approximately 6.5cm across.  Pre-operative MRI angiograms were performed that allowed 

reconstruction of the cortical surface for each subject.  The angiogram was then aligned with 

intraoperative photos, allowing the identification and localization of the craniotomy window.  

Stimulation mapping was performed using a clinical visual auditory repetition task.   After speech areas 

were identified, our 64 contact microgrid was implanted subdurally and experiments subsequently 

performed for 25-30 minutes.  After experiments concluded, the grid was removed and the surgery 

continued as normal. 

6.2.2 Data Acquisition 

Data was recorded using a bank of 4 g.USBAmp biosignal amplifiers (g.Tec, Austria), each 

consisting of 16 DAC channels for a total of 64 unique inputs.  Potentials were sampled at 1.2kHz and 

band-passed in hardware from 0.5-500Hz, with a hardware notch filter present at 60Hz.  Syncronization 

and cue presentation was done using the BCI2000 software suite48.  Hand pose was time-locked and 

recorded using a Cyberglove II system (Cyberglove Systems, San Jose, CA).  Due to the sampling rate 

difference between the Cyberglove and DAC – 135Hz vs 1.2kHz – piecewise cubic Hermite interpolation 

was used to estimate the glove’s position between samples (see Chapter 5,Figure 21); 

6.2.3 Quickmap 

In an ideal situation, the subject’s craniotomy window would be large enough to expose primary 

sensorimotor cortex.   This would allow stimulation mapping of the area to directly map out areas of 

motor cortex that elicited hand movement.  However, in the event that the craniotomy window was 

inferior to hand motor cortex and did not expose areas associated with hand movement – as was the 

case in both of the subjects we studied here – an alternative to stimulation mapping was developed we 

call Quickmap. 

Initial placement of the grid was performed by the surgeon by sliding the grid subdurally in the 

direction that corresponded to the most likely area associated with superior central sulcus.  After initial 

placement, the first iteration of Quickmap was performed.  This involved recording all 64 electrodes 

while the subject rested for 5 seconds.  After the rest period, the subject was instructed to open and 

close their hand to activate areas of cortex associated with gross motor movement.  Recording ended 

after 10s and the file was processed for changes in high gamma (75-200Hz) between the rest period and 

hand movement.  The results were visually displayed to the researcher as seen in Figure 32.  If the grid 

showed no activity, the grid was moved to the next most likely area based on pre-operative MRI images.  
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If an area of the grid showed activity, the grid was carefully repositioned to be centered over the active 

area of cortex, and Quickmapping was performed again.  This sequence was repeated until the majority 

of the grid showed robust increases in high gamma during movement, indicating that the grid was likely 

over primary hand sensorimotor cortex. 

6.2.4 Experiment I: Gross Motor Movement 

After the subject was brought out of deep anesthesia and Quickmap confirmed that the grid was 

over an area that showed increases in high gamma during hand movement, we began an experiment to 

identify cortical activity elicited by gross motor movement.  A screen was placed comfortably within 

visual range of the subject and the dataglove was put on the subject’s right hand.  The subject was 

instructed to flex their outstretched hand into a fist when they saw a picture of a hand appear on the 

screen, and relax when it disappeared.  Each cue was presented for 3s followed by 3s of rest, repeated a 

total of 10 times. 

6.2.5 Experiment II: Finger flexion 

In addition to investigating activity during gross motor movement, we designed an experiment to elicit 

highly stereotyped but unique movements of each digit.  A white silhouette of a hand was presented to 

the subject.  After 2 seconds, one of the five digits was colored or the index and thumb was highlighted 

(see Figure 33).  The subject was instructed to flex the corresponding finger on their right hand.  After 

another 2 seconds, the highlight was removed and the subject rested.  This sequence was repeated 15 

times for each of the 6 stimuli. 

6.2.6 Cortical reconstruction 

Because the craniotomy window does not expose the central sulcus, it is important to create an 

accurate estimation of the grid’s location.  Pre-operative MR angiograms are performed.  A cortical 

surface is generated from this volume using the Freesurfer reconstruction pipeline79.  As intra-operative 

CT scans are not part of the clinical procedure, grid position relative to the craniotomy window was 

measured from the base of the grid at the hillock of PDMS (due to the single multi-lead wire) to the edge 

of the dural opening.  Taking into account the direction of the visible wire in intraoperative photos and 

aligning the photo’s vasculature to that of the MR angiogram, we are able to estimate the position of 

the grid over the reconstructed cortical anatomy.  Figure 31 shows the results of the reconstruction and 

estimation of cortical location. 
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6.2.7 Signal Analysis 

Offline signal analysis was performed as per previous chapters.  High gamma timeseries were 

calculated using a 75-200Hz band-pass 3rd order Butterworth filter and the Hilbert transform.  However, 

contrary to previous chapters, common average re-referencing was not performed. 

6.3 Results 

6.3.1 Grid Noise in Subject 002 

While there were no problems with the signals recorded for Subject 001, the recordings for 

Subject 002 exhibited noise issues in some of the channels.  The power spectra of the first half of the 

grid (oriented superior to the second half) appeared similar to the expected power spectra when 

recorded from human cortex8.  However, the second half (channels 33-64) showed a much higher noise 

floor and exhibited unusually large variance in cortical potentials (see Figure 34).  While a small minority 

of the channels in this latter half of the grid showed normal power spectra, we opted to discount these 

channels from the recordings so as not to skew the results.  In this respect, the grid from Subject 002 

can be treated as an 8-by-4 array of 32 electrodes. 

6.3.2 Coherence across channels 

Coherence across the grid was calculated without additional re-referencing.  Coherency 

measurements were taken at 1,2,3,4,5 and 7-away neighbor measurements.  Both subjects show a 

strong coherence across in low frequency values (Subject 001 at 25-35Hz, 002 at 8-12 Hz), but 

significantly lowerd decreases in the range associated with high gamma (75-200Hz).  A spike in the 

coherence measurements can be seen in both subjects at 60 and 120Hz due to harmonics of line noise.  

An upward trend in coherency is present as the signal-to-noise ratio approaches the noise floor at higher 

frequencies.  

At 3mm – a single nearest-neighbor electrode – both subjects exhibit a coherency consistently 

below 0.5 in high gamma.  Moving to second-nearest-neighbor, electrodes at a distance of 6mm are 

consistently below 0.2.  These results indicate that while there is appears to be scome mutual 

information at 3mm spacing, the majority of the signal is accounted for by signals unique to each 

recording. 

6.3.3 Gross grid activation – comparison with prediction 

According to the estimations made in Chapter 3, with a 3mm grid over hand area we would 

expect to see about 21 electrodes (32%) that show large-scale increases in high-gamma activity and 

around 54 electrodes (84%) that show minor increases.  Figure 36 demonstrates the high gamma (75-
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200Hz) activity comparing movement periods to rest periods.   Setting the lower threshold for both 

subjects at a z-score of 2 – already a significant increase with a P value of < 0.05 – we see 52 electrodes 

in Subject 001 and 32 electrodes in Subject 002 that show increases in high gamma (81% and 94% 

respectively).  Z-scores for both subjects are as high as 6 standard deviations above resting potential for 

movement.  This suggests that both grids were successfully placed over areas of cortex that are 

associated with volitional hand movements. 

6.3.4 Finger flexion 

Figure 37 shows the results of the finger flexion task for subjects 001 and 002.  Every digit 

movement for Subject 001 shows at least three electrodes with mean z-scores above 4, and all but 

thumb have 9 or more.  The pattern of activity of high gamma activity associated with each digit 

movement is clearly spatially distributed for both subjects.  Subject 001 had significant thumb activity on 

the inferior edge of the grid (left edge in Figure 37), while index, middle, ring, and pinky progressing 

further superior along the grid.  Subject 002 showed thumb activity in the middle of the grid, with each 

subsequent digit appearing along the posterior edge of the grid from inferior to superior, respectively. 

Pinch activity for both subjects showed surprising patterns of cortical activation.  In both cases, areas of 

cortex that increased in activity during thumb and index appear in pinch.  Areas that are associated with 

middle, ring and pinky finger are not coactivated to the level of index and thumb. 

6.3.5 Temporal Activity 

Unlike the study we performed in Chapter 3, we are not limited to time-locking analysis on cue 

onset.  Recording the dataglove position synchronized to the cortical recordings allows precise 

movement and cortical time-series averaging.  The Joint Angle and Channel traces in Figure 37 show that 

the high gamma activity is very tightly correlated to the onset of movement and at times the high 

gamma reaches 12 standard deviations above rest.   

It is important to note that the movement executed by each subject differs.  When instructed to 

“flex the indicated finger” before the experiment began, Subject 001 repeatedly flexed and relaxed each 

digit repeatedly during stimulus presentation.  In contrast, Subject 002 flexed the indicated digit and 

maintained this flexed pose until the cue was removed.  This difference can account for the difference in 

the duration of the high gamma increase associated with movement.   

6.3.6 Joint correlation 

Log(high-gamma) timeseries for each channel were correlated with to the flexion value 

associated with the suggested cue (Figure 38) and individual joint angle recordings (Figure 39).  Spatial 
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patterns of correlation with flexion values followed similar patterns to those seen in the relative high 

gamma traces from Figure 37.  Similar to the previous mappings, pinch also seemed to be simply a 

superposition of index and thumb movement for both subjects. 

However, the spatial patterns seen in Figure 39 show a much finer pattern of spatial distribution 

between the proximal and medial digits of each finger, suggesting that the spatial representation of 

each individual joint may be at a higher resolution than whole finger flexion.  Proximal joints show a 

much broader pattern of correlation than medial joints of the same digit.  In addition, it appears that for 

some joint angles the correlation is inversely correlated.  This may be an artifact of the way that the 

dataglove’s resistive strips measure extension that occurs as the subject presses the distal bone against 

their palm during finger flexions. 

6.3.7 Classification  

Classification of each cue presentation period was performed on the finger flexion task.  Mean 

power for each channel was calculated for all channels and was classified into one of 6 categories (one 

of five digits or pinch) using K-Nearest Neighbor classification80.  10-fold classification was performed for 

each subject.  When using all recorded channels, the correct digit flexion was identified 100% of the 

time for Subject 001 and 73% of the time in Subject 002.  Chance prediction for 6 classes is 1/6, or 17%. 

As a further test of classification, the number of channels used for classification was reduced to 

5 for each subject (see Figure 40).  For Subject 001, five electrodes were chosen that were roughly 

discriminable by observation for each digit.  For Subject 002, due to the smaller size of the grid all 

possible combinations of 5 channels were tested and the five that best predicted the outcome were 

identified.  10-fold classification based on five of Subject 001’s 64 electrodes gave a classification 

accuracy of 100%, identical to the accuracy when using 100% of the grid.  Classification accuracy using 

the 5 best electrodes for Subject 002 resulted in an increased prediction accuracy of 85%.   

6.4 Discussion 

6.4.1 Subject 002 Noise 

The exact nature of the noise seen in Subject 002’s recordings is unknown.  Likely scenarios 

include a short in the microgrid’s microwires in the exiting lead, a problematic ground or reference 

connection between the first two and last two biosignal amplifiers, or a misalignment of the pigtail lead 

connectors. In spite of the problem, however, the remaining 32 channels still provided enough discrete 

information to be able to classify each grip well above chance. 
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6.4.2 Quickmapping critical 

We had originally hoped that the craniotomy windows in these intraoperative surgeries would 

have allowed the use of stimulation mapping to locate and enumerate primary hand motor cortex.  Due 

to the clinical requirements in  both subjects, the craniotomy ended up being far inferior to the 

predicted area making grid placement problematic. Since we had anticipated this scenario and 

developed Quickmap based on previous studies that suggested high gamma was a realistic alternative to 

stimulation for functional mapping64,81–83,   we precisely locate and map areas of the cortex that were 

correlated with volitional hand movement in rapid succession, successfully identifying the desired 

neuroanatomy hidden underneath the skull within 90s both times.  

6.4.3 Gross movement may be built from subcomponents 

The classification accuracy for both grids was surprisingly high, reaching 100% classification rates 

for 10-fold validation in Subject 001.  This means that during the 10-fold training/testing classification 

runs, not a single epoch was erroneously decoded.  Given the variability of any type of recorded 

biosignals and that ECoG signals themselves are second- or third-order metrics of neural activity, the 

robustness of the signal is apparent.  Even in Subject 002, classification rates were well above chance; a 

metric that would almost certainly be higher given a fully functional grid. 

Even more remarkable, however, is the classification accuracy when restricting the input to just 

5 channels.  Just five channels allowed for 100% accurate classification of Subject 001’s movement.  It 

should be noted that classification was performed on all movements including pinch.  This means that in 

spite of having just five dimensions of variability, a full six states can be classified with perfect accuracy, 

even when one of them is a movement that is comprised of a combination of two of the other states.  

Figure 41 shows that significant differences in activity levels can be seen across the grid, suggesting that 

there is a spatial basis for cortical organization in hand sensorimotor cortex. 

This latter aspect has a broader implication in the context of volitional movement.  Even though 

the spatial patterns elicited during pinch appeared to be the superposition of the two individual finger 

flexions, the pinch movement could successfully be classified distinct from the individual digit 

movements.  This suggests that complex dexterous movements could in fact be built from a 

combination of simpler basic building blocks; such is the idea of muscle synergies.  If we were to able 

identify a basic set of synergistic movements, it may be possible to reconstruct more complex motions 

from them, such as those used during object grasping and manipulation.  The following chapter will 
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investigate the possibility that not only do these synergies exist at the cortical level, but that they can 

predict the vast amount of variance in hand pose.  
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Figure 29 – Relative size of the microgrid designed for this experiment.  Standard clinical grids (upper left) have 3mm 
platinum disks spaced at 10mm center-to-center.  The electrode grid implanted into the pediatric patient – described in 
Chapter 3 – used the 2mm pads spaced at 5mm.  The grid we developed for this study (lower-right) contained 64 1.5mm-
diamater electrodes spaced at 3mm. 
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Figure 30 – Image of the microgrid that was implanted.  It’s scale can be seen next to a set of standard clinical forceps.  All 64 
contacts come out in a single wire that splits in to four 16-contact pig-tails.  Each pigtail was plugged into a single biosignal 
amplifier. 
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Figure 31 – Upper-left: intraoperative photo of the craniotomy of Subject 001, with artificial landmarks highlighted in yellow. 
The lead coming from the microgrid can be seen in white.  The vasculature from the intraop photo was aligned with the 
vasculature in a pre-operative magnetic resonance angiogram (MRA, upper-right).  Estimated artificial landmark location is 
highlighted in red.  After alignment, 3 dimensional grid location is estimated to cover primary sensorimotor cortex (red 
square, lower). 
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Figure 32 – Screenshot of the quickmap program used to identify whether the grid was over motor cortex.  Left columns 
show the unrolled grid (channels 1-64) vs RSA-value.  The lowest dotted line in each plot indicates zero correlation with 
activity, followed by RSA=.1 above it, with the solid line at 0.5 RSA.  Values above .1 indicate weak positive correlation, and 
values approaching 0.5 indicate strong correlation.  Right column shows a graphical representation of the grid, with a redder 
color indicating a stronger correlation.  To ensure that noise did not contaminate the results, the raw signal (top row) was re-
referenced four different ways to try to eliminate noise and identify signal: common average, amplifier bank, corner –
reference, and pairwise referencing (2

nd
 through bottom, respectively). 
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Figure 33 – Experimental instructions for finger flexion task.  During rest periods, an empty silhouette of a hand was 
presented to the subject (top middle).  Every 2s one of five digits (or index and thumb for pinch) was highlighted for 2s.  
Subject was instructed to flex the indicated digit during cue presentation. 
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Figure 34 – Illustration of the noise issue in Subject 002.  The first 32 channels (green) showed normal, expected power 
spectral densities commonly seen during human studies.  However, channels 33-64 exhibited strange noise-like across nearly 
all channels with a marked decrease in signal-to=noise ratio (B).  Power spectra in A are shown stacked in C, with a clear 
division between electrodes 32 and 33.  However, the first 32 channels are estimated to have spanned both sides of central 
sulcus, illustrated by the blue line in D. 
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Figure 35 – Averaged coherence measurements across both subjects and comparison to the 5mm grid recorded in Chapter 3 
and a sample from a standard 10mm clinical grid.  High coherence in beta can be seen.  However, coherence at higher 
frequencies was lower.  There was nearly no coherence at 9mm in the broad-band high frequency range (75-200Hz), 
consistent with the results of the standard clinical grids. 
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Figure 36 – Results of gross hand motor movement.  Nearly every electrode in both Subject 001 and 002 showed a log high-
gamma power (75-200Hz) Z-score of 2 or greater relative to the mean resting log power (top).  Average joint angles are 
shows in the middle row, time-locked to the onset of movement.  Time course signals for both subjects show about a 1s 
delay from cue presentation to the onset of movement (time=0) 
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Figure 37 – Results for each individual finger flexion.  Each column indicates activity associated with the stimuli in the first 
row.  Grid activity is shows in terms of mean z-scored log power in high gamma (75-200Hz) during movement periods relative 
to rest, time-locked to the onset of movement.  Each of 19 joint angles is shown relative to movement onset.  The bottom 
row shows time-course z-scores for each channel; movement onset was at t=0. 
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Figure 38 – High gamma signals recorded from the microgrid correlated with each digit (1-5) and pinch (6).   
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Figure 39 – Joint angle correlations with high gamma across the grid.  Subject 001 shows negative correlation vales for distal 
joints of index and ring, likely due to the distal joint of the middle and ring fingers pressing against the palm during finger 
flexion.  
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Figure 40 – Classification results for Subject 001 and 002 for finger flexion task.  Using all 64 and 32 electrodes netted 100% 
and 73% classification for all six movement types (five digits and pinch).  Using the 5 most varying electrodes for each digit 
for Subject 001, classification remained at 100%.  An optimization routine was used to select the 5 channels used for Subject 
002 resulting in 86% classification accuracy. 
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Figure 41 – Mean power +/- one std dev. for selected electrodes in Subject 001 for each motion.  Comparisons marked with 
*,** or *** are significant at p < 0.05, 0.01, and 0.001 respectively, and all non-overlapping error bars are considered 
significant at p < 0.001.  Electrodes show broad activity (channel 29, 27) and digit specificity (ch 59, 35).  Channel 63 shows 
unique activity for pinch in comparisons to other electrodes.  It was the only electrode to show insignificant activity for 
pinch, whereas thumb or index finger activity was present. 
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7 Chapter 7 – Reconstructing Hand Pose from Neural Signals 
 

7.1 Further Microgrid Study 
The brain takes care of many processes simultaneously: processing input, calculating internal 

states, goal evaluation, planning motor output and execution of movement among many others. With 

the large number of neurons and high interconnectivity in synaptic connections between them, many 

areas of the cortex are coactivated to process this input.  It is important to show that our assumption 

that primary motor cortex is the appropriate area to look for evidence of the proposed synergies.  This 

requires evidence that kinematic correlations exist with recordings from the outermost layer of primary 

motor cortex during highly stereotyped movement.  Moran et al. observed that primates implanted with 

primary motor cortex electrode arrays showed highly correlated neural activity to proximal arm 

movements, indicating reaching information is encoded in that region81. Recent progress in high 

dimensional reconstruction of proximal primate limb movement from neural firings show highly robust 

activation patterns exist within motor cortex sufficient to perform accurate approximation of limb 

posture 11.  These findings provide evidence that while other areas of the brain may play a role in 

planning motor movement, accurate reconstruction of distal hand pose is possible by observation of 

primary motor cortex alone. 

Our hypothesis suggests that though there may not be unique spatial locations of cortex that 

control each individual digit or synergy, spatial patterns of activity can be observed over time that, 

though overlapping, can be regressed to show correlation to hand dynamics.  Many mathematical tools 

have been developed recently that can identify correlates of populations of neurons to dynamic motion, 

though the vast majority of these model the recordings as a vector sum of preferred directions, a type of 

population vector.  This approach works well when there are large populations of neurons being 

recorded, but such situations are generally situated to single dimensional decoding in local field 

potential (LFP) recordings.   

7.2 Methods 

7.2.1 Subjects and recordings 

 In the previous chapter, we discussed the intraoperative setup and biosignal recordings 

that were performed on subjects that underwent cranial surgery for the purposes of tumor resection.  

Though our experimental time within the surgical theater was limited to 30 minutes, the cumulative 

time spent on Quickmap and the first two experiments allowed us time to run two subsequent 
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experiments: performing dexterous motion by repeatedly grasping objects, and performing freeform, 

non-stereotyped hand motions.  In the case of Subject 001, electrode 32 was identified as contaminated 

with an unknown noise source and was discounted, leaving a total of 63 valid channels.  

7.2.2 Experiment III: Object Grasping 

Expanding on the previous the previous chapter’s range of motion during experiments, our 

second bedside experiment in this aim allowed subjects to explore the joint-space commonly associated 

with object manipulation.  With the previous intraoperative experiment providing information about 

cortical activity during stereotyped isolated digit movement, it is important to observe if the cortical 

representation of simultaneous movement of multiple digits is encoded in a unique way, or whether it is 

encoded simply as the superposition of areas activated with individual finger movements. 

The patient was instructed to place their hand outstretched on a table in front of them with 

their arm relaxed and their hand in a neutral, resting position.  Before the experiment begins, the 

researcher administering the experiment instructed the subject on how to grip one of six objects: a 

cellular phone, a narrow tube, a large tub, the handle of a small case, a pencil, and a piece of paper (see 

Figure 42).  The objects selected for this study encompassed a different range of possible grip variance 

depending on the object: power grip (five-fingered grasp), briefcase (fingers in linked curling motion 

with thumb supporting), pencil (index, thumb and middle finger), planar (fingers linked with pads 

touching thumb pad), pinch (thumb and index precision pinch), palmar (fingers splayed, palm 

supporting), and angled support (similar to palmar, but with increasing finger flexion from index to 

pinky).   

At a visual cue, the researcher selected the specified object and places it near the subject’s 

hand.  The subject then proceeded to grip the object in the manner previously specified.  After two 

seconds, the subject released the object allowing it to be removed from both sight and reach.  Though 

the amount of variance seen during object grasping was expected be significantly higher than that seen 

in the previous finger flexion experiment (described in Chapter 6), the motion is still highly stereotyped.  

No integration with full limb movement or coordinated body motion was present, eliciting only 

movement from the hand.  

 

7.2.3 Experiment IV: Free Movement 

All experiments so far were in highly controlled environments involving highly stereotyped 

motions, ranging from basic gross movement to precision grip.  However, any results found in these 
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controlled environments need to be able to be reproduced under less constrained circumstances.  An 

experiment involving free limb movement allows the patient to explore the entire state space of 

dexterous movement during periods of normal activity that may include – but not limited to – object 

manipulation, gesturing, relaxation and precision grasping.   

To elicit these natural movements, the patient wore the dataglove for a period of 2 minutes 

after the object grasping task was complete.  Subjects were instructed to perform any actions, 

movements and gestures they wished during this time and encouraged to do motions they expected to 

perform during a typical day.  Motions included – but were not limited to – counting on fingers, typing 

on a computer keyboard, pointing, gesturing, etc.  The expectation is that broader the range of motions 

recorded – free of rigid experimental constraint – the wider the space of natural hand movement both 

subjects were able to explore given their limited range of motion during the surgical procedure.   

Because this experiment does not involve time-locked prompts, naïve methods of grip 

decomposition need to be applied (i.e. principal component analysis) that make no assumptions about 

the state of the glove.  As no intraoperative video recording takes place and no audio recording is 

performed, attempting to empirically label certain periods of free movement is both impractical from an 

accuracy standpoint and impossible from a records standpoint. 

7.2.4 Synergy Generation 

“Synergies” – coordinated joint movements – were determined by applying principal component 

analysis to the joint covariance matrix over the course of the entire recording.  The synergies are the 

eigenvectors produced by eigenvalue decomposition, which in turn are the joint weights for each 

principal component.  Before applying PCA, each joint angle is normalized to a range of 0-1 and 

subsequently zero-meaned.  As our study is designed to investigate the dynamics of the hand in the 

context of coordinated digit movement, only the first 19 sensors of the dataglove were used; wrist yaw, 

wrist pitch and palm roll were not included in analysis. 

Scalar projections    of each synergy were generated by multiplying each synergy   by a scalar 

  and adding the result to the mean hand position  ̅. 

     ̅       7.1 
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7.2.5 Kalman Filtering 

A Kalman filter was used to map the cortical high-gamma timeseries onto both joint angles as 

recorded by the dataglove, and the time-course contribution of each synergy.  The design of the kalman 

filter is based on the study performed by Wu et al84.  Our study differs from theirs in that the recordings 

used in their study was local field potentials, and thus the metric used in their study was a modified 

form of firing rate.  As we cannot discern single spikes and instead rely on a second order aggregate 

metric of high-gamma activity, modifications to their algorithm was required.   

Our algorithm is based on their likelihood model that relates hand kinematics to neural firing 

rates.  A generative base model is defined as: 

            7.2 

Where k=1,2,3…M where M is the number of samples in the trial, and     
      for joint 

angles or     
    matrix for synergies, a matrix that linearly relates the respective glove space to the 

log power of high gamma.  We make the same assumption that Wu et al. make, in that the observation 

noise is zero-mean and normally distributed with covariance (    (    ),   = covariance). 

In addition, we leverage the temporal prior that models how the glove state is expected to 

evolve over time, based on the previous timestep: 

              7.3 

Where   is the coefficient matrix     
     or     

    for joint angle and synergy, 

respectively, and the noise term     (    ).  This equation linearly relates the previous hand 

position to the previous hand position at time point  .  

 

In order to solve these equations, we apply a two-step process for each timestep:  the time 

update step, and the measurement update step, as shown in Figure 43. 

 

Time Update: The time update step is performed by applying two equations.  First, at time   , the priori 

state estimate  ̂    – with the state defined as the 19x1 joint angle vector or the 7x1 synergy vector – is 

predicted forward in time using the state update matrix  : 

  ̂ 
    ̂    7.4 

Next, the uncertainty of the Gaussian noise is incorporated into the system by covariance matrix 

 : 

   
        

    7.5 

Where   
  is the a priori error covariance matrix at time     . 
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Measurement Update:  Using the prediction  ̂ 
  from the time update step and log high gamma activity 

   (    vector, where   is the number of channels recorded), we modify the predicted value based on 

the observed cortical signals and update the posterior error covariance matrix: 

  ̂   ̂ 
    (     ̂ 

 ) 7.6 

    (     )  
  7.7 

 

 

Where    is the state error covariance after observing the cortical data and    is the Kalman 

gain matrix as defined by: 

      
   (   

     )   7.8 

Training: The State update matrix A, along with the system covariance matrix W, the extraction matrix 

H, and the measurement covariance matrix Q can be found by using glove training data    and cortical 

training data    for         , and performing least-squares regression.  A closed-form solution was 

outlined by Wu et al.: 
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All mean-squared error calculations were derived using 10-fold cross-validation was performed, 

training on 60% of data and testing on 40%. 

During the Grips task, there were long periods of rest between object grasps lasting as long as 

8s, during which there was very little or no movement of the glove.  As these periods of stationary pose 

affected mean-squared error calculations significantly, training and testing of the Kalman filter was 

performed solely on periods of movement.  During training, the neighboring samples that occurred at 

discontinuities between two movements were discarded as they would have introduced noise into the 

training matrices. 
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For the freeform task, the entire period was treated as a single movement.  The first 60% of 

samples were used as training to test on the remaining 40%. 

7.2.6 Pose Reconstruction 

By applying the trained Kalman filter   to a testing data sample   , we can reconstruct the 

predicted pose of the hand using the first   synergies by: 

  ̃(    )   ̅  ∑ (  )   

 

   

 7.13 

Where  ̅ is the mean hand position  (  )  is the contribution of the  th synergy    as predicted 

by the Kalman filter.  Initial starting pose and error covariance estimates have a significant impact on 

reconstruction error.  For each grasp , the starting hand pose was assigned as the glove’s position at the 

previous sample. 

7.2.7 Reconstruction Accuracy 

It is difficult to directly compare the accuracy of pose reconstruction between cortical/joint-

space and cortical/synergy space, as the number of dimensions differs and will affect any resulting error 

measurements.  To be able to compare between reconstruction techniques, the synergy contributions 

are projected back into joint space according to Equation 5.4.  This allows a direct calculation of the 

mean-squared error in pose reconstruction at time   between the recorded pose    and the estimated 

pose  ̃: 

    (    ̃ )  
 

  
∑(      ̃  )

  

   

 7.14 

For all 19 joints.   

7.2.8 Uniform and Optimal lag  

Previous studies have shown that a roughly 140ms delay in signal propagation between neural 

activation and muscle activation84,85.  Initial Kalman training and testing was performed using time-

locked samples and does not take this delay into account.  To determine the effect of introducing a 

temporal delay between the cortex and the change in joint angles, the lag    was found according to 

             [           ] (   (    ̃(       ))) 7.15 

Where    is the true recorded hand pose and ̃(       ) is the trained Kalman reconstruction 

from cortical signal    with all channels temporally shifted by  . 
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In addition to a uniform lag, we explored the possibility that allowing each individual channel to 

vary in time lag may capture the transmission of information intra-cortically.  A greedy algorithm 

identified by Wu et al. was used that quickly converged after 5 iterations.  

7.3 Results 

7.3.1 Spatial Distribution 

In contrast to the results obtained in during individual finger flexion, the spatial distribution of 

high gamma activity was similar between grips for both subjects (see Figure 44). For both subjects, the 

power grip performed during the Case grasp activated the largest area of cortex, with more than half of 

electrodes in Subject 001 and every electrode in Subject 002 maintaining high-gamma z-scores 3σ or 

more above rest. 

7.3.2 Time-Course Activity 

Figure 45 shows the time-course traces for the dataglove and cortical signal during each object 

grasp, with both subjects possessing many cortical channels that reached and sustained levels six 

standard deviations or more above resting high gamma.   Subject 001 appeared to initially extend the 

fingers outward around the object before closing around the grasp.  Though there is a small increase in 

cortical activity during the extension phase, the majority of the variance in high gamma appears after 

extension coincident with the subsequent closing of the grasp.  In contrast, Subject 002 showed broad 

activity across large areas of the grid at the initial onset of movement.  At the end of the grasp, the 

cortical activity in both subjects returned to rest levels. 

7.3.3 High-Gamma Onset 

A histogram of the onset of high gamma relative to detected glove movement during object 

grasping is shown in Figure 46.  High gamma onset was classified as one-third of the maximum positive 

derivative of high gamma before movement; in short, one third of the peak rate of increase of high 

gamma.  For both subjects, the mean varied from -260ms to -80ms (negative values imply the cortical 

signal leads glove motion) though the mean varied between objects.  For all objects for both subjects, 

the majority of electrodes showed high gamma increase onset leading the glove motion. 

7.3.4 Classification 

Grip classification was performed using 10-fold cross-validation with k-nearest-neighbor 

mapping, using mean log high gamma from all channels as the feature set.  Classification for Subject 001 

was 50%, while Subject 002 was 43.4%, both significantly above the chance level of 16.6% at p < 0.001. 
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7.3.5 Synergies 

A total of 18 synergies were generated for each subject, with the first 6 accounting for 90% of 

observed variance and 9 contributing 95% of variance.  Figure 47 shows that there is no significant 

difference between the amount of variance the synergies contribute between Grips and Freeform 

movement. 

Figure 48 shows the projection of the first five synergies for both patients.  Inter-subject 

variation is low for synergies 1-4, with the fifth synergy beginning to show difference.  The first synergy, 

accounting for the majority of the variance, involves a synchronized flexion/extension for all joints of all 

the fingers, with the thumb remaining nearly stationary.  This is consistent with the first synergy shown 

in Chapter 5, Figure 24.  It is important to note that the PCA decomposition assigns arbitrary signs to the 

synergy projection.  Inverting the sign on the 4th synergy for either subject shows a close match. 

7.3.6 Optimal lag and synergy count 

While 18 synergies were generated, it is important to determine whether all of them are 

required for correct reconstruction, or whether only a subset of the synergies are required to generate 

an appropriate hand pose.  We varied the number of cumulative synergies used during reconstruction in 

addition to uniformly lagging/leading the brain signal by -350ms to 350ms in steps of 25ms.  Figure 49 

shows that the lowest MSE for Subject 001’s pose reconstruction occurred at -75ms using 7 synergies.  

Adding further synergies appears to add spurious noise to the pose estimate.  For Subject 002, lowest 

MSE occurred at -225ms, using only 2 synergies.  However, the first two synergies for Subject 002 did 

not involve significant thumb motion, which only began in the third synergy.  Because of this, we 

restricted optimality for Subject 002 to the lowest MSE with three or more synergies contributing to the 

reconstruction.  With this assumption, the next lowest MSE occurred at -150ms using 7 synergies.  As a 

total of 7 synergies provided the lowest error in reconstruction for both subjects when using a uniform 

lag, subsequent reconstruction results used the first 7 synergies for reconstruction. 

7.3.7 Cortical contribution to each synergy 

The state update matrix A in Equation 7.3 implies that, during gripping motions, the glove moves 

in a predictable, linear manner.  The extraction matrix H is an NxM matrix that subsequently relates the 

importance of each electrode (the “measurement” in a Kalman filter) to modifying this linear 

relationship, where N is the number of channels and M is the number of outputs (i.e. 7 synergies or 19 

joint angles).  Each row of the extraction matrix H can be interpreted as the spatial distribution of 
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activity that contributes to that specific synergy.  Spatial maps associated with each of the 7 synergies 

can be seen in Figure 50.   

7.3.8 Per-electrode delays 

The mean-squared error for time-locked cortical recordings was 147 and 174 for Subjects 001 

and 002, respectively (see Figure 51).  Allowing the cortical signals to uniformly vary dropped the error 

measurements to 138 and 162, though not a significant drop.  However, allowing the channels to 

individually vary lowered the average MSE during reconstruction down to 113 and 139, a significant 

drop at P<0.05 for both subjects.  Spatially arranging the lagged values according to electrode position 

(Figure 52) did not produce any observable spatial arrangement. 

7.3.9 Reconstruction: Joint Angle vs. Synergies 

Overall:  Using uniform lags, reconstruction was performed by decoding joint angles directly and 

decoding the first 7 synergies and reconstructing hand pose.  For Subject 001, the mean-squared error 

was 138 for synergies vs 172 for joint angles, suggesting that decoding synergies directly can produce a 

more accurate hand pose (see Figure 53).  Similarly in Subject 002, the mean-squared error for synergies 

was 162 vs 193 for joint angles.  An example of the joint angles reconstructed by synergies for a single 

Jar grip is shown in Figure 54 as reconstructed using the Kalman filter based on cortical data. 

Object-specific Performance: Though reconstruction accuracy varied according to each object, 

in nearly every case the decoding performance of synergies outperformed joint angle decoding (see 

Figure 55).  The only grasp that was better predicted by joint angles was Subject 001’s grasp of Paper.   

All other object grips were more accurately reconstructed by mapping cortical data on to the first 7 

synergies. 

7.3.10 Grasp classification from reconstruction 

In addition to classifying grasps based on the mean high gamma activity during the entire grasp 

as seen in section 7.3.4, we attempted classification using the timeseries generated predicted by the 

kalman filter operating on the neural data.  Due to the intra-object variation in grasping, an average MSE 

statistic was calculated by taking the difference between the reconstructed joint trajectories and each 

grasp of each type (i.e. average MSE difference between predicted motion and all 9 “Jar” grasps).  The 

reconstruction was subsequently classified as the object type with the lowest MSE.  However, this 

classification technique was not able to produce correct results above chance for any temporal lag 

applied to the kalman filter 
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It is likely that though the Kalman filter reconstructions can track the recorded joint angles 

closely, its accuracy is insufficient to discriminate between the grips with statistical certainty.  In 

addition, the intra-object grasps were not uniform in length and required clipping of the end of the trial, 

likely impacting the results. Ideally, future experiments would be designed to control for the temporal 

variation observed during subsequent grasps of the same object.  Set periods of time for approach, hold, 

and release would help ensure that the predictions for different grasps were more uniform. 

7.3.11 Freeform 

The first 5 synergies generated during free motion are shown in Figure 56, with their respective 

contributions to variance shown as dotted lines in Figure 47.  The first principal component is very 

similar to those observed during the Grips task and in the study in Chapter 5.  However, subsequent 

synergies are much different, with none of the following five appearing in the grips task.   

Attempts at reconstruction of freeform pose from synergies identified during show that 

reconstruction using the first synergy produced the best results, at a lag of 0ms for Subject 001 and -

100ms for Subject 002.  In both cases, adding additional synergies appeared to add noise and increased 

the mean squared error. 

7.4 DISCUSSION 

7.4.1 Spatial contribution of synergies 

The spatial distribution of the first synergy is somewhat surprising.  In both subjects, the 

coefficients of the extraction matrix for the first synergy suggest that this synergy – coordinated and 

simultaneous curl of all finger joints from distal to proximal – can be predicted almost entirely by the 

state update matrix.  This suggests that the relationship is linear and may be directly related to 

widespread cortical activity in sensorimotor cortex.   

In contrast, subsequent synergies show distinct spatial variations and patterns.  If it is the case 

that the brain encodes motion as a subset of synergistic muscle activations, there appears to be distinct 

spatial weighting of cortical activity associated with motion.  What is unique about these cortical 

patterns is that they differ greatly from the spatial activity when averaging across the entire grip as seen 

in Figure 44, where each object was selected to elicit one of the established forms of grasping (i.e. 

pyramidal vs power grip). 

The simplest interpretation is that the brain does not have unique encodings for grasping 

different objects, a result that is likewise unexpected based on numerous grasp studies that have 

identified robust grasp types across multiple subjects (e.g. four-finger pyramidal, precision pinch, 
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palmar).  A more interesting observation would be that while humans may grasp and manipulate objects 

in robust ways, the underlying cortical activity does not encode these types of grips directly.  Rather, the 

cortex may build these common grips out of combinations of linear subcomponents applied in a 

repeatable way.  

7.4.2 Grips vs Freeform 

There are two important questions with regard to the freeform study.  First, are the synergies 

that we identified during the grips experiment also present during free motion?  The motions the 

subjects performed during the grips experiment were dexterous in terms of the ability to manipulate 

and hold objects, yet highly stereotyped in that they performed the same motions repeatedly.  On the 

other hand, the motions produced during freeform motion were expected to be highly dexterous and 

non-stereotyped.  If the synergies observed in the grip were again observed in free motion, this would 

strongly suggest that the synergies identified were the true underlying building blocks of motion.  

However, comparing the synergies generated by Grips in Figure 48 and Freeform in Figure 56 appears to 

show significant differences beyond the first synergy – not enough to reconstruct the additional 

intricacies during grip.   

The second question is whether the mapping identified in the grips data can reconstruct the 

freeform better than the inverse.  Before that can be explored however, it is sensible to identify if the 

same number of synergies – in the case of both subjects, 7 synergies - provides the most accurate 

reconstruction for freeform.  Exploring the error as a function of uniform lag and number of synergies 

produces an unusual result.  Figure 57 shows that, for both subjects, the lowest error in reconstructing 

freeform data from synergies identified during the first 60% of freeform motion occurred using the first 

synergy.  Adding additional synergies decreased the reconstruction accuracy. 

The fact that additional synergies introduce noise into the system means that a comparison 

between the grip types is impractical, given that the number of synergies that best reconstructs 

freeform grips is just the first principal component of grip.  Attempting to reconstruct hand pose using 

one principal component would only produce projections along that axis, not capturing movements that 

deviate from the projection at all. 

This has important implications for future studies and the broader goal of driving a closed-loop 

prosthetic device directly from cortical signals.  Researchers and engineers must consider the intended 

outputs of the desired mapping.  If the goal is to recreate grasping motions, it appears there may be a 

set of synergies that are common among subjects and that these should be a target of any cortical 



www.manaraa.com

BIOENGINEERING University of Washington 2013 

 

111 Chapter 7 – Reconstructing Hand Pose from Neural Signals | Timothy Blakely – Doctoral 
Thesis 

 

mapping.  However, if the end goal is to cover the full variance of human hand motion it is important 

that the training dataset used when creating the mapping is not based on grasping but instead based on 

a broader range of motion more characteristic of  everyday motions. 

7.4.3 Dimensionality reduction as error minimization 

Even if the cortex does not encode dexterous hand motion using these synergies, the fact that 

the reconstructions were better with a subset of synergies as opposed to all synergies suggests that 

dimensionality reduction is a viable form of error reduction.  It is plausible that the cortex employs a 

similar form of dimensionality reduction to improve the accuracy of single movements while attempting 

to minimize positional error, and musculoskeletal studies in mammals have shown that motor units 

synapse on multiple muscle fibers88,89.   

From an engineering perspective, this evidence shows that dimensionality reduction could prove 

useful during on-line control of a prosthetic limb.  Instead of requiring the user to maintain control over 

the 20+ degrees of freedom of a manipulator directly, the user would only be required to control 7 

degrees of freedom; a much lower cognitive load and less prone to decoding error.  Additional ease and 

utility in control can be achieved by leveraging the kinematics identified during the kalman filter.  As the 

first synergy coefficients in Figure 50 show, there is not much cortical specificity required to initiate the 

gross grasping motion.  Manipulators driven this way could initiate a grasping motion based on broad 

increases in cortical activity in M1 and proceed to follow the kinematic approximation given by the state 

update matrix in the Kalman filter and continually modified by the second, third, and later cortical-

specific synergies.  In this manner, the subject would begin a grasp and only modify the grasp’s 

trajectory, a reasonable approach to control strategy. 

7.4.4 Alternative error estimates 

One final consideration is the metric used for error.  In all reconstruction studies, we used the 

mean-squared error of each individual joint angle relative to the actual recorded position of the glove.  

This allowed us to compare mappings from cortex to joint angles and cortex to synergies using the same 

metric.  However, there is a drawback to using this metric.  As the distal tip of each digit is dependent on 

the previous joints, errors in reconstruction of each joint angle compound the error in end effector 

position.  In other words, small errors at the proximal joint are compounded by small errors at the 

medial joint which in turn compound small errors in the distal joint.  This compounding effect, though 

small overall, can cause large deviations in the Cartesian location of the end of the finger. 
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Instead, a different error measurement could be used; a metric that is based not on joint angle, 

but on end effector position.  This would negate the compounding error problem by optimizing for 

precise distal tip positioning, possibly generating poses that are more physically relevant to grip.  This 

metric is not without its own problems however.  If during object grasping the subjects were to use a 

surface other than the distal pad to grasp the object – for instance using the medial knuckle as the 

object’s contact point – this measurement may produce hand poses that are less fit for object grasping.  

As such, we believe that evaluation of mean-squared error for mapping fitness is a reasonable approach. 

7.4.5 Motor vs Sensory 

Because both grids were implanted under the dura and moved beyond the cranial window, it is 

impossible to definitively say where the grid was located.  As significant high-gamma activity levels were 

correlated with hand motion, it is reasonable to say that the grid were located over cortex associated 

with volitional hand sensorimotor cortex.  It is entirely possible that the grids were over sensory cortex 

or spanning central sulcus and including both sensory and primary motor cortex.  The spatial maps of 

temporal delays in Figure 52 show no definitive spatial arrangement, though primate studies by Fetz and 

Soso suggest that areas pre- and post-central sulcus can coactivate before the onset of movement86,87. 

Irrespective of whether the grids were directly over primary motor cortex, our results suggest 

that it is possible to create a mapping between cortical activity and synergistic hand movement that 

closely reproduces the actual recorded hand pose. 
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Figure 42 – Objects used during the grip task, and the suggested hand poses the subject was to take. 
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Figure 43 – Flow diagram of a step in the Kalman filter. The time update (blue) is performed on the glove state, and modified 
by the measurement update (red) giving the final glove pose output. 
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Figure 44 – High-gamma activity maps during each grip, z-scored to mean activity during rest.  In both subject, the Jar 
required the broadest activity of cortex. 
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Figure 45 – Time course glove flexion (top row) and high gamma activity (bottom row), for each object for both subjects.  
Subject 001 initially extends their fingers (below start position on graph), followed by flexing to grasp the object.  In contrast, 
Subject 002 maintained a flexed pose between grips and only performed a single movement to grasp each object. 
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Figure 46 – Time onset of high gamma increase relative to detection of glove movement (t=0).  Left vertical axis is for Subject 
001 (blue) and right for Subject 002 (red). 
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Figure 47 – Synergy contributions to variance.  For all conditions, it takes 6 synergies to account for 90% of the total variance, 
and a minimum of 9 to account for 95%. 
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Figure 48 – Projection along the first five synergies for both subjects, with the mean hand pose boxed in the middle.  The first 
four synergies match very closely, beginning to differ at the 4

th
.  Note that due to the use of PCA during synergy generation 

was performed, the projection weight for the fourth synergy is inverted. 
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Figure 49 – Plot of mean-squared error of reconstruction as a function of uniform brain lag/lead and number of synergies 
used for reconstruction.  In Subject 001, the lowest mean-squared error occurred at the 7

th
 synergy at -75ms (mapping brain 

activity 75ms before glove motion).  In Subject 002, the lowest mean square error occurred at the 2
nd

 synergy at -200ms.  
However, as the first two synergies did not cover for thumb motion, additional synergies were explored, with the next 
lowest MSE at the 7

th
 synergy at -125ms.  
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Figure 50 – Cortical weights for each of the top 7 synergies as defined by the extraction matrix used during Kalman Filter 
training.  Weight can be interpreted as the importance of each electrode in modifying the glove’s position as predicted by 
the state update matrix 
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Figure 51 – Mean-Squared error as a function of reconstructed cortical data leading glove activity.  Tests were performed at 
zero-lag (Time-Locked), uniform lag across all channels (Uniform Lag) and electrode-specific lag (Optimized Lag).  Optimized 
lag values produced significantly better reconstructions than time-locked or uniform. 
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Figure 52 – Optimized lag values for both subjects, showing no significant spatial organization of lagged values. 
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Figure 53 – Mean-squared error in glove position estimation when mapping brain data to either joint angles directly, or to 
the first 7 synergies.  
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Figure 54 – Reconstruction of Subject 001’s hand pose based on high-gamma (75-200Hz) cortical data to the first 7 synergies 
using a Kalman filter.  Each trace represents the joint angle over time for recorded (black) and predicted (red) hand position 
during a single Jar grip. 
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Figure 55 – Reconstruction error for each grip type, comparing reconstruction of mapping to joint angles directly or the top 7 
synergies. 
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Figure 56 – Synergies identified during free movement.  Synergy 1 is similar to the first synergy identified in Grips.  
Subsequent synergies differ significantly between subjects and do not appear in the first 5 in the grips experiment. 
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Figure 57 – MSE as a function of synergy count and lag during free movement.  In both subjects, the lowest error occurs for 
the first synergy, with additional synergies decreasing reconstruction accuracy. 
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